Exit time assymptotics on non-commutative 2-torus.

Biswarup Das (Joint work with Debashish Goswami)

Statistics and Mathematics Unit Indian Statistical Institute, Kolkata

biswarup_r@isical.ac.in

August 17, 2010

<ロ> (四) (四) (三) (三) (三) (三)

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus The purpose of this talk is to establish an analogue of exit time asymptotics of Brownian motion on manifolds, in the set-up of non-commutative 2-torus. Using these asymptotics, we will try to formulate definitions of certain geometric invariants e.g. intrinsic dimension, mean curvature etc for the non-commutative 2-torus.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus

Outline of the talk

1 Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus

Outline of the talk

1 Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2 Formulation of quantum exit time.

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Outline of the talk

1 Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

2 Formulation of quantum exit time.

3 A case study: Exit time asymptotics on the non-commutative 2-torus

Exit time asymptotics of Brownian motion on manifolds:

B.Das

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus We begin with the following well-known proposition:

Pinsky,1994

Consider a hypersurface $M \subseteq \mathbb{R}^d$ with the Brownian motion process X_t^m starting at m. Let $T_{\varepsilon} = inf\{t > 0 : ||X_t^m - m|| = \varepsilon\}$ be the exit time of the motion from an extrinsic ball of radius ε around m. Then we have

$$\mathbb{E}_m(T_{\varepsilon}) = \varepsilon^2/2(d-1) + \varepsilon^4 H^2/8(d+1) + O(\varepsilon^5),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where H is the mean curvature of M.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus

æ

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus

Gray,1973

Let $V_m(\epsilon)$ denote the volume of a ball of radius ϵ around $m \in M$. Let n be the intrinsic dimension of the manifold. Then we have

$$V_m(\epsilon) = \frac{\alpha_n \epsilon^n}{n} \left(1 - K_1 \epsilon^2 + K_2 \epsilon^4 + O(\epsilon^6) \right)_m,$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where $\alpha_n := 2\Gamma(\frac{1}{2})^n \Gamma(\frac{n}{2})^{-1}$ and K_1, K_2 are constants depending on the manifold.

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus

Gray,1973

Let $V_m(\epsilon)$ denote the volume of a ball of radius ϵ around $m \in M$. Let n be the intrinsic dimension of the manifold. Then we have

$$V_m(\epsilon) = \frac{\alpha_n \epsilon^n}{n} \left(1 - K_1 \epsilon^2 + K_2 \epsilon^4 + O(\epsilon^6) \right)_m,$$

where $\alpha_n := 2\Gamma(\frac{1}{2})^n \Gamma(\frac{n}{2})^{-1}$ and K_1, K_2 are constants depending on the manifold.

The intrinsic dimension n of the hypersurface M is the unique integer n

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

satisfying $\lim_{\epsilon \to 0} \frac{\mathbb{E}(\tau_{\epsilon})}{V_{\epsilon}^{\frac{m}{m}}} = \begin{cases} \infty \text{ if } m \text{ is less than } n; \\ \neq 0 \text{ if } m \neq n; \\ = 0 \text{ if } m > n. \end{cases}$

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus

Observe that
$$\frac{V(\epsilon)^{\frac{2}{n}}}{\epsilon^2} \to \left(\frac{\alpha_n}{n}\right)^{\frac{2}{n}}$$
 and $\frac{V(\epsilon)^{\frac{4}{n}}}{\epsilon^4} \to \left(\frac{\alpha_n}{n}\right)^{\frac{4}{n}}$ as $\epsilon \to 0^+$.

æ

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Observe that $\frac{V(\epsilon)^{\frac{2}{n}}}{\epsilon^2} \to \left(\frac{\alpha_n}{n}\right)^{\frac{2}{n}}$ and $\frac{V(\epsilon)^{\frac{4}{n}}}{\epsilon^4} \to \left(\frac{\alpha_n}{n}\right)^{\frac{4}{n}}$ as $\epsilon \to 0^+$. In view of this, the asymptotic expression appearing in Pinsky's result can be recast as

$$\mathbb{E}(\tau_{\epsilon}) = \frac{1}{2(d-1)} \left(\frac{V(\epsilon)n}{\alpha_n}\right)^{\frac{2}{n}} + \frac{H^2}{8(d+1)} \left(\frac{V(\epsilon)n}{\alpha_n}\right)^{\frac{4}{n}} + O(V(\epsilon)^{\frac{5}{n}}).$$

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Observe that $\frac{V(\epsilon)^{\frac{2}{n}}}{\epsilon^2} \to \left(\frac{\alpha_n}{n}\right)^{\frac{2}{n}}$ and $\frac{V(\epsilon)^{\frac{4}{n}}}{\epsilon^4} \to \left(\frac{\alpha_n}{n}\right)^{\frac{4}{n}}$ as $\epsilon \to 0^+$. In view of this, the asymptotic expression appearing in Pinsky's result can be recast as

$$\mathbb{E}(\tau_{\epsilon}) = \frac{1}{2(d-1)} \left(\frac{V(\epsilon)n}{\alpha_n}\right)^{\frac{2}{n}} + \frac{H^2}{8(d+1)} \left(\frac{V(\epsilon)n}{\alpha_n}\right)^{\frac{4}{n}} + O(V(\epsilon)^{\frac{5}{n}}).$$

In particular, we get the extrinsic dimension d and the mean curvature H by the following formulae:

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Observe that $\frac{V(\epsilon)^{\frac{2}{n}}}{\epsilon^2} \to \left(\frac{\alpha_n}{n}\right)^{\frac{2}{n}}$ and $\frac{V(\epsilon)^{\frac{4}{n}}}{\epsilon^4} \to \left(\frac{\alpha_n}{n}\right)^{\frac{4}{n}}$ as $\epsilon \to 0^+$. In view of this, the asymptotic expression appearing in Pinsky's result can be recast as

$$\mathbb{E}(\tau_{\epsilon}) = \frac{1}{2(d-1)} \left(\frac{V(\epsilon)n}{\alpha_n}\right)^{\frac{2}{n}} + \frac{H^2}{8(d+1)} \left(\frac{V(\epsilon)n}{\alpha_n}\right)^{\frac{4}{n}} + O(V(\epsilon)^{\frac{5}{n}}).$$

In particular, we get the extrinsic dimension d and the mean curvature H by the following formulae:

$$d = \frac{1}{2} \left(1 + \lim_{\epsilon \to 0} \frac{1}{\mathbb{E}(\tau_{\epsilon})} \left(\frac{nV(\epsilon)}{\alpha_n} \right)^{\frac{2}{n}} \right), \tag{1}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Observe that $\frac{V(\epsilon)^{\frac{2}{n}}}{\epsilon^2} \to \left(\frac{\alpha_n}{n}\right)^{\frac{2}{n}}$ and $\frac{V(\epsilon)^{\frac{4}{n}}}{\epsilon^4} \to \left(\frac{\alpha_n}{n}\right)^{\frac{4}{n}}$ as $\epsilon \to 0^+$. In view of this, the asymptotic expression appearing in Pinsky's result can be recast as

$$\mathbb{E}(\tau_{\epsilon}) = \frac{1}{2(d-1)} \left(\frac{V(\epsilon)n}{\alpha_n}\right)^{\frac{2}{n}} + \frac{H^2}{8(d+1)} \left(\frac{V(\epsilon)n}{\alpha_n}\right)^{\frac{4}{n}} + O(V(\epsilon)^{\frac{5}{n}}).$$

In particular, we get the extrinsic dimension d and the mean curvature H by the following formulae:

$$d = \frac{1}{2} \left(1 + \lim_{\epsilon \to 0} \frac{1}{\mathbb{E}(\tau_{\epsilon})} \left(\frac{nV(\epsilon)}{\alpha_n} \right)^{\frac{2}{n}} \right), \tag{1}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

$$H^{2} = 8(d+1)\left(\frac{\alpha_{n}}{n}\right)^{\frac{4}{n}} \lim_{\epsilon \to 0} \frac{\mathbb{E}(\tau_{\epsilon}) - \frac{1}{2(d-1)}\left(\frac{nV(\epsilon)}{\alpha_{n}}\right)^{\frac{2}{n}}}{V(\epsilon)^{\frac{4}{n}}}.$$
 (2)

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Suppose that *M* is a Riemannian manifold of Dimension *n*. Let B_r^x be a ball of radius *r* around $x \in M$. Choose a coordinate neighbourhood $(U_x; x_1, x_2, ... x_n)$ around *x*. Let W_t^x be a Brownian motion on *M* starting at *x* and τ_{B^x} be the exit time of the Brownian motion from the ball B_r^x .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Suppose that *M* is a Riemannian manifold of Dimension *n*. Let B_r^x be a ball of radius *r* around $x \in M$. Choose a coordinate neighbourhood $(U_x; x_1, x_2, ..., x_n)$ around *x*. Let W_t^x be a Brownian motion on *M* starting at *x* and $\tau_{B_r^x}$ be the exit time of the Brownian motion from the ball B_r^x . Then we have

$$\chi_{\{\tau_{B_r^x}>t\}} = \bigwedge_{s \le t} \left(\chi_{\{W_s^x \in B_r^x\}} \right),$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where \bigwedge denotes infimum.

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Suppose that *M* is a Riemannian manifold of Dimension *n*. Let B_r^x be a ball of radius *r* around $x \in M$. Choose a coordinate neighbourhood $(U_x; x_1, x_2, ..., x_n)$ around *x*. Let W_t^x be a Brownian motion on *M* starting at *x* and $\tau_{B_r^x}$ be the exit time of the Brownian motion from the ball B_r^x . Then we have

$$\chi_{\{\tau_{B_r^{\times}} > t\}} = \bigwedge_{s \leq t} \left(\chi_{\{W_s^{\times} \in B_r^{\times}\}} \right),$$

where \bigwedge denotes infimum.

For $f \in L^{\infty}(U_x)$, let

 $j_t(f)(x,\omega) := \chi_{U_x}(W_t^x)f(W_t^x(\omega)).$

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Suppose that *M* is a Riemannian manifold of Dimension *n*. Let B_r^x be a ball of radius *r* around $x \in M$. Choose a coordinate neighbourhood $(U_x; x_1, x_2, ..., x_n)$ around *x*. Let W_t^x be a Brownian motion on *M* starting at *x* and $\tau_{B_r^x}$ be the exit time of the Brownian motion from the ball B_r^x . Then we have

$$\chi_{\{\tau_{B_r^{\mathsf{x}}} > t\}} = \bigwedge_{s \leq t} \left(\chi_{\{\mathsf{W}_s^{\mathsf{x}} \in \mathsf{B}_r^{\mathsf{x}}\}} \right),$$

where \bigwedge denotes infimum.

For $f \in L^{\infty}(U_x)$, let

$$j_t(f)(x,\omega) := \chi_{U_x}(W_t^x)f(W_t^x(\omega)).$$

Note that

 $j_t: L^{\infty}(U_x) \to L^{\infty}(U_x) \otimes B(\Gamma(L^2(\mathbb{R}_+, \mathbb{C}^n))),$

since by the Wiener- Itô isomorphism, $L^2(\mathbb{P}) \cong \Gamma(L^2(\mathbb{R}_+, \mathbb{C}^n))$, where \mathbb{P} is the *n* dimensional Wiener measure.

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Suppose that *M* is a Riemannian manifold of Dimension *n*. Let B_r^x be a ball of radius *r* around $x \in M$. Choose a coordinate neighbourhood $(U_x; x_1, x_2, ..., x_n)$ around *x*. Let W_t^x be a Brownian motion on *M* starting at *x* and $\tau_{B_r^x}$ be the exit time of the Brownian motion from the ball B_r^x . Then we have

$$\chi_{\{\tau_{B_r^{\mathsf{x}}} > t\}} = \bigwedge_{s \leq t} \left(\chi_{\{\mathsf{W}_s^{\mathsf{x}} \in \mathsf{B}_r^{\mathsf{x}}\}} \right),$$

where \bigwedge denotes infimum.

For $f \in L^{\infty}(U_x)$, let

$$j_t(f)(x,\omega) := \chi_{U_x}(W_t^x)f(W_t^x(\omega)).$$

Note that

$$j_t: L^{\infty}(U_x) \to L^{\infty}(U_x) \otimes B(\Gamma(L^2(\mathbb{R}_+, \mathbb{C}^n))),$$

since by the Wiener- Itô isomorphism, $L^2(\mathbb{P}) \cong \Gamma(L^2(\mathbb{R}_+, \mathbb{C}^n))$, where \mathbb{P} is the *n* dimensional Wiener measure.

So one may write

$$\chi_{\{\tau_{B_r^{\times}}>t\}}(\cdot) = \bigwedge_{s \leq t} j_s(\chi_{B_r^{\times}})(x, \cdot) = \bigwedge_{s \leq t} ((ev_x \otimes id) \circ j_s(\chi_{B_r^{\times}}))(\cdot).$$

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Thus we may view $\tau_{B_r^{\times}}$ as a spectral family in $L^{\infty}(U_x) \otimes B(\Gamma(L^2(\mathbb{R}_+, \mathbb{C}^n)))$ by the prescription:

$$au_{\scriptscriptstyle B^{ imes}_r}\left([0,t)
ight) = \mathbf{1} - \wedge_{s \leq t}(j_s(\chi_{\scriptscriptstyle B^{ imes}_r})) \;.$$

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Thus we may view $\tau_{B_r^{\times}}$ as a spectral family in $L^{\infty}(U_x) \otimes B(\Gamma(L^2(\mathbb{R}_+, \mathbb{C}^n)))$ by the prescription:

$$au_{\scriptscriptstyle B^X_r}\left([0,t)
ight) = \mathbf{1} - \wedge_{s \leq t}(j_s(\chi_{\scriptscriptstyle B^X_r})) \;.$$

Moreover, we have:

$$\mathbb{E}(\tau_{_{B_r^{x}}}) = \int_0^\infty \mathbb{P}(\tau_{_{B_r^{x}}} > t) dt = \int_0^\infty \langle e(0), \{(ev_x \otimes 1) \left(\wedge_{s \leq t} j_s(\chi_{_{B_r^{x}}}) \right) \} e(0) \rangle dt.$$

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus The exit time asymptotics of the Brownian motion amounts to studying the behaviour of the quantity $\mathbb{E}(\tau_{_{B_{x}^{x}}})$ as $r \to 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Alternatively:

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus The exit time asymptotics of the Brownian motion amounts to studying the behaviour of the quantity $\mathbb{E}(\tau_{B_r^{X}})$ as $r \to 0$.

Choose a sequence $(x_n)_n \in M$ and positive numbers ϵ_n such that $x_n \to x$ and $\epsilon_n \to 0$. Now for large n, $\chi_{\{W_s^{X_n} \in B_{\epsilon_n}^{X_n}\}}(\cdot) \stackrel{\mathcal{L}}{=} \chi_{\{W_s^{X} \in B_{\epsilon_n}^{X}\}}(\cdot)$ for each $s \ge 0$. Thus,

$$\mathbb{E}(\tau_{B_{\epsilon_n}^{\times_n}}) = \int_0^\infty \langle e(0), \{ (ev_{x_n} \otimes id) \left(\wedge_{s \le t} j_s(\chi_{B_{\epsilon_n}^{\times_n}}) \right) \} e(0) \rangle dt = \mathbb{E}(\tau_{B_{\epsilon_n}^{\times}}),$$

うして ふぼう ふほう ふほう しょうくの

i.e. the asymptotic behaviour of $\mathbb{E}(\tau_{B_{\epsilon_n}^{\times n}})$ and $\mathbb{E}(\tau_{B_{\epsilon_n}^{\times}})$ will be the same.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Note that the points of M are in 1-1 correspondence with the pure states of $L^{\infty}(M)$ and $\{P_n = \chi_{B_{\epsilon_n}^{\times_n}}\}_n$ is a family of projections on $L^{\infty}(M)$, so that we have:

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Note that the points of M are in 1-1 correspondence with the pure states of $L^{\infty}(M)$ and $\{P_n = \chi_{B_{\epsilon_n}^{\kappa_n}}\}_n$ is a family of projections on $L^{\infty}(M)$, so that we have:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $ev_{x_n}(P_n) = 1;$

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Note that the points of M are in 1-1 correspondence with the pure states of $L^{\infty}(M)$ and $\{P_n = \chi_{B_{e_n}^{x_n}}\}_n$ is a family of projections on $L^{\infty}(M)$, so that we have:

$$ev_{x_n}(P_n) = 1;$$

 $ev_{x_n} \stackrel{\omega *}{\rightarrow} ev_x;$

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Note that the points of M are in 1-1 correspondence with the pure states of $L^{\infty}(M)$ and $\{P_n = \chi_{B_{\epsilon_n}^{\times_n}}\}_n$ is a family of projections on $L^{\infty}(M)$, so that we have:

$$ev_{x_n}(P_n) = 1;$$

 $ev_{x_n} \xrightarrow{\omega*} ev_x;$
 $vol(P_n) \rightarrow 0.$

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Note that the points of M are in 1-1 correspondence with the pure states of $L^{\infty}(M)$ and $\{P_n = \chi_{B_{\epsilon_n}^{\kappa_n}}\}_n$ is a family of projections on $L^{\infty}(M)$, so that we have:

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

$$ev_{x_n}(P_n) = 1;$$

 $ev_{x_n} \stackrel{\omega *}{\rightarrow} ev_x;$
 $vol(P_n) \rightarrow 0.$

We now move into non-commutative setup.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus There are several formulations of the concept of quantum stop time due to Attal,Sinha(1998), Parthasarathy,Sinha(1987), Barnett,Wilde(1991).

Interplay between Geometry and Probability

asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus There are several formulations of the concept of quantum stop time due to Attal,Sinha(1998), Parthasarathy,Sinha(1987), Barnett,Wilde(1991). The one most suitable for us is:

Interplay between Geometry and Probability

asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus There are several formulations of the concept of quantum stop time due to Attal,Sinha(1998), Parthasarathy,Sinha(1987), Barnett,Wilde(1991). The one most suitable for us is:

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus There are several formulations of the concept of quantum stop time due to **Attal,Sinha**(1998), **Parthasarathy,Sinha**(1987), **Barnett,Wilde**(1991). The one most suitable for us is:

Barnett, Wilde, 1991

Let $(\mathfrak{A}_t)_{t\geq 0}$ be an increasing family of von-Neumann algebras (called a filtration). A quantum random time or stop time adapted to the filtration $(\mathfrak{A}_t)_{t\geq 0}$ is an increasing family of projections $(E_t)_{t\geq 0}$, $E_0 = I$ such that E_t is a projection in \mathfrak{A}_t and $E_s \leq E_t$ whenever $0 \leq s \leq t < +\infty$.

Interplay between Geometry and Probability

asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus There are several formulations of the concept of quantum stop time due to Attal,Sinha(1998), Parthasarathy,Sinha(1987), Barnett,Wilde(1991). The one most suitable for us is:

Barnett, Wilde, 1991

Let $(\mathfrak{A}_t)_{t\geq 0}$ be an increasing family of von-Neumann algebras (called a filtration). A quantum random time or stop time adapted to the filtration $(\mathfrak{A}_t)_{t\geq 0}$ is an increasing family of projections $(E_t)_{t\geq 0}$, $E_0 = I$ such that E_t is a projection in \mathfrak{A}_t and $E_s \leq E_t$ whenever $0 \leq s \leq t < +\infty$.

Observe that by our definition, $\tau_{B_r^{\times}}([0, t))$ is adapted to the filtration $(\mathfrak{A}_t)_{t\geq 0}$, where $\mathfrak{A}_t := L^{\infty}(U_x) \otimes B(\Gamma_{t]})$ $(\Gamma_{t]} := \Gamma(L^2([0, t], \mathbb{C}^n))$), for $\tau_{B_r^{\times}}([0, t]) \in \mathfrak{A}_t \otimes 1_{\Gamma_{[t}}$.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion oi manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Suppose that we are given an E-H flow $j_t : \mathcal{A} \to \mathcal{A}'' \otimes B(\Gamma(L^2(\mathbb{R}_+, k_0)))$, where \mathcal{A} is a C^* or von-Neumann algebra. For a projection $P \in \mathcal{A}$, the family $\{1 - \wedge_{s \leq t} (j_s(P))\}_{t \geq 0}$ defines a quantum random time adapted to the filtration $(\mathcal{A}'' \otimes B(\Gamma_{t]}))_{t \geq 0}$.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion oi manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Suppose that we are given an E-H flow $j_t : \mathcal{A} \to \mathcal{A}'' \otimes B(\Gamma(L^2(\mathbb{R}_+, k_0)))$, where \mathcal{A} is a C^* or von-Neumann algebra. For a projection $P \in \mathcal{A}$, the family $\{1 - \wedge_{s \leq t} (j_s(P))\}_{t \geq 0}$ defines a quantum random time adapted to the filtration $(\mathcal{A}'' \otimes B(\Gamma_{t]}))_{t \geq 0}$.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Suppose that we are given an E-H flow $j_t : \mathcal{A} \to \mathcal{A}'' \otimes B(\Gamma(L^2(\mathbb{R}_+, k_0)))$, where \mathcal{A} is a C^* or von-Neumann algebra. For a projection $P \in \mathcal{A}$, the family $\{\mathbf{1} - \wedge_{s \leq t} (j_s(P))\}_{t \geq 0}$ defines a quantum random time adapted to the filtration $(\mathcal{A}'' \otimes B(\Gamma_{t]}))_{t \geq 0}$.

Definition

We refer to the quantum random time $\{1 - \bigwedge_{s \leq t} j_s(P)\}_{t \geq 0}$ as the 'exit time from the projection P.
Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Let τ be a state (to be thought of as non-commutative volume form on a C^* or von Neumann algebra), and assume that we are given a family $\{P_n\}_{n\geq 1}$ of projections in \mathcal{A} , and a family $\{\omega_n\}_{n\geq 1}$ of pure states of \mathcal{A} such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutativ 2-torus Let τ be a state (to be thought of as non-commutative volume form on a C^* or von Neumann algebra), and assume that we are given a family $\{P_n\}_{n\geq 1}$ of projections in \mathcal{A} , and a family $\{\omega_n\}_{n\geq 1}$ of pure states of \mathcal{A} such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• ω_n is weak* convergent to a pure state ω ,

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Let τ be a state (to be thought of as non-commutative volume form on a C^* or von Neumann algebra), and assume that we are given a family $\{P_n\}_{n\geq 1}$ of projections in \mathcal{A} , and a family $\{\omega_n\}_{n\geq 1}$ of pure states of \mathcal{A} such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- ω_n is weak* convergent to a pure state ω ,
- $\omega_n(P_n) = 1$ for all n,

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Let τ be a state (to be thought of as non-commutative volume form on a C^* or von Neumann algebra), and assume that we are given a family $\{P_n\}_{n\geq 1}$ of projections in \mathcal{A} , and a family $\{\omega_n\}_{n\geq 1}$ of pure states of \mathcal{A} such that

- ω_n is weak* convergent to a pure state ω ,
- $\omega_n(P_n) = 1$ for all n,
- $v_n \equiv \tau(P_n) \rightarrow 0$ as $n \rightarrow \infty$.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Let τ be a state (to be thought of as non-commutative volume form on a C^* or von Neumann algebra), and assume that we are given a family $\{P_n\}_{n\geq 1}$ of projections in \mathcal{A} , and a family $\{\omega_n\}_{n\geq 1}$ of pure states of \mathcal{A} such that

- ω_n is weak* convergent to a pure state ω ,
- $\omega_n(P_n) = 1$ for all n,
- $v_n \equiv \tau(P_n) \rightarrow 0$ as $n \rightarrow \infty$.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Let τ be a state (to be thought of as non-commutative volume form on a C^* or von Neumann algebra), and assume that we are given a family $\{P_n\}_{n\geq 1}$ of projections in \mathcal{A} , and a family $\{\omega_n\}_{n\geq 1}$ of pure states of \mathcal{A} such that

• ω_n is weak* convergent to a pure state ω ,

- $\omega_n(P_n) = 1$ for all n,
- $v_n \equiv \tau(P_n) \rightarrow 0$ as $n \rightarrow \infty$.

Definition

Let $\gamma_n := \int_0^\infty dt \langle e(0), (\omega_n \otimes id) \circ \bigwedge_{s \le t} j_s(P_n) e(0) \rangle$. We say that there is an exit time asymptotic for the family $\{\overline{P}_n; \omega_n\}$ of intrinsic dimension n_0 if

$$\lim_{n \to \infty} \frac{\gamma_n}{v_n^{\frac{2}{m}}} = \begin{cases} \infty \text{ if } m \text{ is just less than } n_0 \\ \neq 0 \text{ if } m \neq n \\ = 0 \text{ if } m > n \end{cases}$$

and

$$\gamma_n = c_1 v_n^{\frac{2}{n_0}} + c_2 v_n^{\frac{4}{n_0}} + \cdots + c_k v_n^{\frac{2^k}{n_0}} + O(v_n^{\frac{2^{k+1}}{n_0}}) \text{ as } n \to \infty.$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus It is not at all clear whether such an asymptotic exists in general, and even if it exists, whether it is independent of the choice of the family $\{P_n; \omega_n\}$. If it is the case, one may legitimately think of $c_1, c_2, ..., c_k...$ as geometric invariants and imitating the classical formulae as discussed before, the extrinsic dimension d and the mean curvature H of the non-commutative manifold may be defined to be

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus It is not at all clear whether such an asymptotic exists in general, and even if it exists, whether it is independent of the choice of the family $\{P_n; \omega_n\}$. If it is the case, one may legitimately think of $c_1, c_2, ..., c_k...$ as geometric invariants and imitating the classical formulae as discussed before, the extrinsic dimension d and the mean curvature H of the non-commutative manifold may be defined to be

$$d := \frac{1}{2c_1} \left(\frac{n_0}{\alpha_{n_0}}\right)^{\frac{2}{n_0}} + 1, \tag{4}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus It is not at all clear whether such an asymptotic exists in general, and even if it exists, whether it is independent of the choice of the family $\{P_n; \omega_n\}$. If it is the case, one may legitimately think of $c_1, c_2, ..., c_k...$ as geometric invariants and imitating the classical formulae as discussed before, the extrinsic dimension d and the mean curvature H of the non-commutative manifold may be defined to be

$$d := \frac{1}{2c_1} \left(\frac{n_0}{\alpha_{n_0}}\right)^{\frac{2}{n_0}} + 1, \tag{4}$$

$$H^{2} := 8(d+1)c_{2}(\frac{\alpha_{n_{0}}}{n_{0}})^{\frac{4}{n_{0}}}.$$
(5)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Fix an irrational number $\theta \in [0, 1]$.

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Fix an irrational number $\theta \in [0, 1]$.

Definition

The non-commutative 2-torus $C^*(\mathbb{T}^2_{\theta})$ is the universal C^* -algebra generated by a pair of unitaries U, V which satisfy:

 $UV = e^{2\pi i\theta} VU.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Fix an irrational number $\theta \in [0, 1]$.

Definition

The non-commutative 2-torus $C^*(\mathbb{T}^2_{\theta})$ is the universal C^* -algebra generated by a pair of unitaries U, V which satisfy:

$$UV = e^{2\pi i\theta} VU.$$

It can also be viewed as the "Rieffel deformation" of the commutative C^* -algebra $C(\mathbb{T}^2)$.

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

A class of projections on $C^*(\mathbb{T}^2_{\theta})$, as given by Rieffel, is:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus A class of projections on $C^*(\mathbb{T}^2_{\theta})$, as given by Rieffel, is: Choose an $\epsilon \ll \theta$ and let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$, where $f_1, f_0 \in C(\mathbb{T}^2), f_{-1}(t) := \overline{f_1(t+\theta)},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus A class of projections on $C^*(\mathbb{T}^2_{\theta})$, as given by Rieffel, is: Choose an $\epsilon <<\theta$ and let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$, where $f_1, f_0 \in C(\mathbb{T}^2), f_{-1}(t) := \overline{f_1(t+\theta)},$ $f_0(t) = \begin{cases} \epsilon^{-1}t & \text{if } 0 \le t \le \epsilon \\ 1 & \text{if } \epsilon \le t \le \theta \\ \epsilon^{-1}(\theta + \epsilon - t) & \text{if } \theta \le t \le \theta + \epsilon \\ 0 & \text{if } \theta + \epsilon \le t \le 1 \end{cases}$

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus A class of projections on $C^*(\mathbb{T}^2_{\theta})$, as given by Rieffel, is: Choose an $\epsilon <<\theta$ and let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$, where $f_1, f_0 \in C(\mathbb{T}^2), f_{-1}(t) := \overline{f_1(t+\theta)},$ $f_0(t) = \begin{cases} \epsilon^{-1}t & \text{if } 0 \le t \le \epsilon \\ 1 & \text{if } \epsilon \le t \le \theta \\ \epsilon^{-1}(\theta + \epsilon - t) & \text{if } \theta \le t \le \theta + \epsilon \\ 0 & \text{if } \theta + \epsilon \le t \le 1 \end{cases}$ $f_1(t) = \begin{cases} \sqrt{f_0(t) - f_0(t)^2} & \text{if } \theta \le t \le \theta + \epsilon \\ 0 & \text{if otherwise.} \end{cases}$

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus • Let tr be the canonical trace in $C^*(\mathbb{T}^2_{\theta})$, given by $tr(\sum_{m,n} a_{mn} U^m V^n) = a_{00}$. This trace will be taken as an analogue of the volume form in $C^*(\mathbb{T}^2)$.

B.Das

- Interplay between Geometry and Probability:
- Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus • Let *tr* be the canonical trace in $C^*(\mathbb{T}^2_{\theta})$, given by $tr(\sum_{m,n} a_{mn} U^m V^n) = a_{00}$. This trace will be taken as an analogue of the volume form in $C^*(\mathbb{T}^2)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Throughout the section, we will assume $C^*(\mathbb{T}^2_{\theta}) \subseteq B(L^2(tr))$, and let $W^*(\mathbb{T}^2_{\theta}) := (C^*(\mathbb{T}^2_{\theta}))''$.

B.Das

Interplay between Geometry and Probability:

asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

- Let *tr* be the canonical trace in $C^*(\mathbb{T}^2_{\theta})$, given by $tr(\sum_{m,n} a_{mn} U^m V^n) = a_{00}$. This trace will be taken as an analogue of the volume form in $C^*(\mathbb{T}^2)$.
- Throughout the section, we will assume $C^*(\mathbb{T}^2_{\theta}) \subseteq B(L^2(tr))$, and let $W^*(\mathbb{T}^2_{\theta}) := (C^*(\mathbb{T}^2_{\theta}))''$.
- For $(x, y) \in \mathbb{T}^2$, let $\alpha_{(x,y)}$ denote the canonical action of \mathbb{T}^2 on $C^*(\mathbb{T}^2_{\theta})$ given by $\alpha_{(x,y)}(\sum_{m,n} a_{mn} U^m V^n) = \sum_{m,n} x^m y^n a_{mn} U^m V^n$. Note that the automorphism α is *tr*-preserving. Hence it extends to a unitary operator on $L^2(tr)$, say $u_{(x,y)}$, and $\alpha = ad u$, which implies that α is normal.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

- Let *tr* be the canonical trace in $C^*(\mathbb{T}^2_{\theta})$, given by $tr(\sum_{m,n} a_{mn} U^m V^n) = a_{00}$. This trace will be taken as an analogue of the volume form in $C^*(\mathbb{T}^2)$.
- Throughout the section, we will assume $C^*(\mathbb{T}^2_{\theta}) \subseteq B(L^2(tr))$, and let $W^*(\mathbb{T}^2_{\theta}) := (C^*(\mathbb{T}^2_{\theta}))''$.
- For $(x, y) \in \mathbb{T}^2$, let $\alpha_{(x,y)}$ denote the canonical action of \mathbb{T}^2 on $C^*(\mathbb{T}^2_{\theta})$ given by $\alpha_{(x,y)}(\sum_{m,n} a_{mn} U^m V^n) = \sum_{m,n} x^m y^n a_{mn} U^m V^n$. Note that the automorphism α is *tr*-preserving. Hence it extends to a unitary operator on $L^2(tr)$, say $u_{(x,y)}$, and $\alpha = ad u$, which implies that α is normal.
- On $C^*(\mathbb{T}^2_{\theta})$, there are two conditional expectations denoted by ϕ_1, ϕ_2 , which are defined as:

$$\phi_1(A) := \int_0^1 lpha_{_{(1,e^{2\pi it})}}(A) dt, \ \ \phi_2(A) := \int_0^1 lpha_{_{(e^{2\pi it},1)}}(A) dt.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From the normality of α , it follows easily that ϕ_1, ϕ_2 are normal maps.

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

- Let tr be the canonical trace in $C^*(\mathbb{T}^2_{\theta})$, given by $tr(\sum_{m,n} a_{mn} U^m V^n) = a_{00}$. This trace will be taken as an analogue of the volume form in $C^*(\mathbb{T}^2)$.
- Throughout the section, we will assume $C^*(\mathbb{T}^2_{\theta}) \subseteq B(L^2(tr))$, and let $W^*(\mathbb{T}^2_{\theta}) := (C^*(\mathbb{T}^2_{\theta}))''$.
- For (x, y) ∈ T², let α_(x,y) denote the canonical action of T² on C^{*}(T²_θ) given by α_(x,y)(∑_{m,n} a_{mn}U^mVⁿ) = ∑_{m,n} x^myⁿa_{mn}U^mVⁿ. Note that the automorphism α is tr-preserving. Hence it extends to a unitary operator on L²(tr), say u_(x,y), and α = ad u, which implies that α is normal.
- On $C^*(\mathbb{T}^2_{\theta})$, there are two conditional expectations denoted by ϕ_1, ϕ_2 , which are defined as:

$$\phi_1(A) := \int_0^1 lpha_{(1,e^{2\pi it})}(A) dt, \ \ \phi_2(A) := \int_0^1 lpha_{(e^{2\pi it},1)}(A) dt.$$

From the normality of α , it follows easily that ϕ_1, ϕ_2 are normal maps. For a projection P, let $A_{(s,t)}(P) := \alpha_{e^{2\pi i s}, e^{2\pi i t}}(P)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

B.Das

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Theorem

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ be a projection such that f_0, f_1 satisfy the condtions described before. Consider the projections $A_{s,t}(P), A_{s',t'}(P)$ such that $|s - s'| < \frac{\epsilon}{4}$. Then

$$(A_{s,t}(P)) \bigwedge (A_{s',t'}(P)) = \chi_{s}(U),$$

for the set $S = X_1 \cap X_2 \cap X_3 \cap X_4$, where $X_1 = \tau_{-s}(\{x | f_1(x) = 0\}), X_2 := \tau_{-s'}(\{x | f_1(x) = 0\}),$ $X_3 := \tau_{-s}(\{x | f_0(x) = 1\})$ and $X_4 := \tau_{-s'}(\{x | f_0(x) = 1\}).$

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Theorem

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ be a projection such that f_0, f_1 satisfy the condtions described before. Consider the projections $A_{s,t}(P), A_{s',t'}(P)$ such that $|s - s'| < \frac{\epsilon}{4}$. Then

$$(A_{s,t}(P)) \bigwedge (A_{s',t'}(P)) = \chi_{s}(U),$$

for the set $S = X_1 \cap X_2 \cap X_3 \cap X_4$, where $X_1 = \tau_{-s}(\{x | f_1(x) = 0\}), X_2 := \tau_{-s'}(\{x | f_1(x) = 0\}),$ $X_3 := \tau_{-s}(\{x | f_0(x) = 1\})$ and $X_4 := \tau_{-s'}(\{x | f_0(x) = 1\}).$

It is worthwhile to note that the conclusion of the above theorem holds if we replace U by U^k , V by V^k , and θ by $\{k\theta\}$ ($\{\cdot\}$ denoting the fractional part).

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Let $P_n = f_{-1}^{(k_n)}(U^{k_n}) + f_0^{(k_n)}(U^{k_n}) + f_1^{(k_n)}(U^{k_n})U^{k_n}$, be projections such that $\{k_n\theta\} \to 0$. Put $\epsilon := \frac{\{k_n\theta\}}{2}$.

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Let $P_n = f_{-1}^{(k_n)}(U^{k_n}) + f_0^{(k_n)}(U^{k_n}) + f_1^{(k_n)}(U^{k_n})U^{k_n}$, be projections such that $\{k_n\theta\} \to 0$. Put $\epsilon := \frac{\{k_n\theta\}}{2}$.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● ● ● ●

Consider a standard Brownian motion in \mathbb{R}^2 , given by $(W_t^{(1)}, W_t^{(2)})$.

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Let $P_n = f_{-1}^{(k_n)}(U^{k_n}) + f_0^{(k_n)}(U^{k_n}) + f_1^{(k_n)}(U^{k_n})U^{k_n}$, be projections such that $\{k_n\theta\} \to 0$. Put $\epsilon := \frac{\{k_n\theta\}}{2}$. Consider a standard Brownian motion in \mathbb{R}^2 , given by $(W_t^{(1)}, W_t^{(2)})$. Define $j_t : W^*(\mathbb{T}^2_{\theta}) \to W^*(\mathbb{T}^2_{\theta}) \otimes B(\Gamma(L^2(\mathbb{R}_+, \mathbb{C}^2)))$ by $j_t(\cdot) := \alpha_{(e^{2\pi i W_t^{(1)}}, e^{2\pi i W_t^{(2)}})}(\cdot)$.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Let $P_n = f_{-1}^{(k_n)}(U^{k_n}) + f_0^{(k_n)}(U^{k_n}) + f_1^{(k_n)}(U^{k_n})U^{k_n}$, be projections such that $\{k_n\theta\} \to 0$. Put $\epsilon := \frac{\{k_n\theta\}}{2}$. Consider a standard Brownian motion in \mathbb{R}^2 , given by $(W_t^{(1)}, W_t^{(2)})$. Define $j_t : W^*(\mathbb{T}^2_{\theta}) \to W^*(\mathbb{T}^2_{\theta}) \otimes B(\Gamma(L^2(\mathbb{R}_+, \mathbb{C}^2)))$ by $j_t(\cdot) := \alpha_{(e^{2\pi i W_t^{(1)}}, e^{2\pi i W_t^{(2)}})}(\cdot)$.

Note that j_t defined above is the standard Brownian motion on $C^*(\mathbb{T}^2_{\theta})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We have:

B.Da

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

We have:

B.Da

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

We have:

Theorem

Almost surely, $\bigwedge_{s < t} (j_s(P_n)(\omega)) \in W^*(U)$, for all n, i.e.

$$\bigwedge_{s\leq t} (j_s(P_n)) \in W^*(U) \otimes B(\Gamma(L^2(\mathbb{R}_+, \mathbb{C}^2))),$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

for each n.

B.Das

between Geometry and Probability:

asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

We have:

Theorem

Almost surely, $\bigwedge_{s < t} (j_s(P_n)(\omega)) \in W^*(U)$, for all n, i.e.

$$\bigwedge_{s\leq t} (j_s(P_n)) \in W^*(U) \otimes B(\Gamma(L^2(\mathbb{R}_+, \mathbb{C}^2))),$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

for each n.

B.Das

between Geometry and Probability:

asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

We have:

Theorem

Almost surely, $\bigwedge_{s < t} (j_s(P_n)(\omega)) \in W^*(U)$, for all n, i.e.

$$\bigwedge_{s\leq t} (j_s(P_n)) \in W^*(U) \otimes B(\Gamma(L^2(\mathbb{R}_+, \mathbb{C}^2))),$$

for each n.

Outline of the proof:

In the strong operator topology,

$$\bigwedge_{0\leq s\leq t} (j_s(P_n)) = \lim_{m\to\infty} \bigwedge_i \{j_{\frac{it}{2^m}}(P_n) \wedge j_{\frac{(i+1)t}{2^m}}(P_n)\}.$$
 (6)

Now almost surely a Brownian path restricted to [0, t] is uniformly continuous, so that the for sufficiently large m, and for almost all ω , $|W_{\frac{it}{2m}}^{(1)} - W_{\frac{(i+1)t}{2m}}^{(1)}|$ can be made small, uniformly for all i such that $i = 0, 1, ..2^m$. So $\bigwedge_i \{j_{\frac{it}{2m}}(P_n) \land j_{\frac{(i+1)t}{2m}}(P_n)\} \in W^*(U)$ by Theorem 3.2. It can be shown that the set of projections of this type is closed in the WOT-topology. Hence proved.

B.Das

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Note that $W^*(U)$ is isomorphic with $L^{\infty}(\mathbb{T})$.

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Note that $W^*(U)$ is isomorphic with $L^{\infty}(\mathbb{T})$. Consider the pure states $\{ev_z \circ E_1, ev_x \circ E_2 | x, z \in \mathbb{T}\}$ on $W^*(\mathbb{T}^2_{\theta})$, which are also normal. Let $z_n = e^{2\pi i \frac{3\{k_n\theta\}}{4}}$. Consider the sequence of pure states $\phi_{z_n} := ev_{z_n} \circ E_1$.

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Note that $W^*(U)$ is isomorphic with $L^{\infty}(\mathbb{T})$. Consider the pure states $\{ev_z \circ E_1, ev_x \circ E_2 | x, z \in \mathbb{T}\}$ on $W^*(\mathbb{T}^2_{\theta})$, which are also normal. Let $z_n = e^{2\pi i \frac{3\{k_n\theta\}}{4}}$. Consider the sequence of pure states $\phi_{z_n} := ev_{z_n} \circ E_1$. Consider

$$\langle e(0), (\phi_{z_n} \otimes 1) \circ \bigwedge_{0 \leq s \leq t} (j_s(P_n)) e(0) \rangle.$$
B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Note that $W^*(U)$ is isomorphic with $L^{\infty}(\mathbb{T})$. Consider the pure states $\{ev_z \circ E_1, ev_x \circ E_2 | x, z \in \mathbb{T}\}$ on $W^*(\mathbb{T}^2_{\theta})$, which are also normal. Let $z_n = e^{2\pi i \frac{3\{k_n\theta\}}{4}}$. Consider the sequence of pure states $\phi_{z_n} := ev_{z_n} \circ E_1$. Consider

$$\langle e(0), (\phi_{z_n} \otimes 1) \circ \bigwedge_{0 \leq s \leq t} (j_s(P_n)) e(0) \rangle.$$

A direct computation shows that this is equal to

$$\mathbb{P}\{e^{2\pi i W_s^{(1)}} \in \mathcal{B}, \ 0 \le s \le t\} = \mathbb{P}\{\tau_{\lfloor \frac{-\{k_n\theta\}}{4}, \frac{\{k_n\theta\}}{4}\rfloor} > t\},$$

where $\mathcal{B} := \{e^{2\pi i x}: x \in [\frac{-\{k_n\theta\}}{4}, \frac{\{k_n\theta\}}{4}]\}.$

A case study:Exit time asymptotics on the noncommutative 2-torus

Note that $W^*(U)$ is isomorphic with $L^{\infty}(\mathbb{T})$. Consider the pure states $\{ev_z \circ E_1, ev_x \circ E_2 | x, z \in \mathbb{T}\}$ on $W^*(\mathbb{T}^2_{\theta})$, which are also normal. Let $z_n = e^{2\pi i \frac{3\{k_n \theta\}}{4}}$. Consider the sequence of pure states $\phi_{z_n} := ev_{z_n} \circ E_1.$ Consider

$$\langle e(0), (\phi_{z_n} \otimes 1) \circ \bigwedge_{0 \leq s \leq t} (j_s(P_n)) e(0) \rangle.$$

A direct computation shows that this is equal to

$$\mathbb{P}\{e^{2\pi i \mathcal{W}_{s}^{(1)}} \in \mathcal{B}, \ 0 \leq s \leq t\} = \mathbb{P}\{\tau_{\lfloor \frac{-\lfloor k_{n}\theta \rfloor}{4}, \frac{\lfloor k_{n}\theta \rfloor}{4} \rfloor} > t\},$$

where $\mathcal{B} := \{e^{2\pi i x} : x \in \begin{bmatrix} -\{k_n\theta\} \\ 4 \end{bmatrix}, \frac{\{k_n\theta\}}{4} \}$ S

So we have a family of
$$(au_n)_n$$
 random times defined by

$$\tau_n([t,+\infty)) = \bigwedge_{0 \le s \le t} (j_s(P_n));$$

so that $\int_0^t \langle e(0), (\phi_{z_n} \otimes 1) \circ \bigwedge_{0 \le s \le t} (j_s(P_n)) e(0) \rangle dt$ can be taken as the expectation of the random time $\overline{\tau_n}$.

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Note that here the analogue for balls of decreasing volume is $(P_n)_n$, such that $tr(P_n) = \{k_n\theta\} \to 0$, tr being the canonical trace in $W^*(\mathbb{T}^2_{\theta})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

et.

B.Das

between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Note that here the analogue for balls of decreasing volume is $(P_n)_n$, such that $tr(P_n) = \{k_n\theta\} \to 0$, tr being the canonical trace in $W^*(\mathbb{T}^2_\theta)$. Now, by the Pinsky's result, we have

$$\int_{0}^{t} \langle e(0), (\phi_{z_{n}} \otimes 1) \circ \bigwedge_{0 \leq s \leq t} (j_{s}(P_{n}))e(0) \rangle dt$$

$$= \mathbb{E}\left(\tau_{\left[-\frac{\{k_{n}\theta\}}{4}, \frac{\{k_{n}\theta\}}{4}\right]}\right)$$

$$= 2 \sin^{2}\left(\frac{\{k_{n}\theta\}}{8}\right) + \frac{2}{3} \sin^{4}\left(\frac{\{k_{n}\theta\}}{8}\right) + O\left(\sin^{5}\left(\frac{\{k_{n}\theta\}}{8}\right)\right)$$

$$= \frac{\{k_{n}\theta\}^{2}}{2^{5}} + \frac{\{k_{n}\theta\}^{4}}{2^{11}.3} + O(\{k_{n}\theta\}^{5}),$$
(7)

since the mean curvature of the circle viewed inside \mathbb{R}^2 is 1.

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus In view of the above equations, we see that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus In view of the above equations, we see that the 'intrinsic dimension' $n_0 = 1$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus In view of the above equations, we see that the 'intrinsic dimension' $n_0 = 1$, the 'extrinsic diimension' d = 5,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus In view of the above equations, we see that the 'intrinsic dimension' $n_0 = 1$, the 'extrinsic diimension' d = 5, and the 'mean curvature' is $\frac{1}{2\sqrt{2}}$.

Interplay between Geometry and Probability

asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus In view of the above equations, we see that the 'intrinsic dimension' $n_0 = 1$, the 'extrinsic diimension' d = 5, and the 'mean curvature' is $\frac{1}{2\sqrt{2}}$. All these give a good justification for developing a general theory of quantum stochastic geometry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Interplay between Geometry and Probability

asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus THANK

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus THANK YOU!!!

・ロト ・ 一 ト ・ ヨト ・ ヨト

æ.

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let
$$\mathfrak{X} = \{A \in W^*(\mathbb{T}^2_{\theta}) | A = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V, f_1, f_0 \in L^{\infty}(\mathbb{T}), f_{-1}(t) := \overline{f_1(t+\theta)}\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let
$$\mathfrak{X} = \{A \in W^*(\mathbb{T}^2_{\theta}) | A = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V, f_1, f_0 \in L^{\infty}(\mathbb{T}), f_{-1}(t) := \overline{f_1(t+\theta)}\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let
$$\mathfrak{X} = \{A \in W^*(\mathbb{T}^2_{\theta}) | A = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V, f_1, f_0 \in L^{\infty}(\mathbb{T}), f_{-1}(t) := \overline{f_1(t+\theta)}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lemma

The subspace \mathfrak{X} is closed in the ultraweak topology.

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let
$$\mathfrak{X} = \{A \in W^*(\mathbb{T}^2_{\theta}) | A = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V, f_1, f_0 \in L^{\infty}(\mathbb{T}), f_{-1}(t) := \overline{f_1(t+\theta)}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lemma

The subspace \mathfrak{X} is closed in the ultraweak topology.

B.Das

between Geometry and Probability

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let
$$\mathfrak{X} = \{A \in W^*(\mathbb{T}^2_{\theta}) | A = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V, f_1, f_0 \in L^{\infty}(\mathbb{T}), f_{-1}(t) := \overline{f_1(t+\theta)}\}.$$

Lemma

The subspace \mathfrak{X} is closed in the ultraweak topology.

Proof.

Let $A_{\beta} := f_{-1}^{(\beta)}(U)V^{-1} + f_{0}^{(\beta)}(U) + f_{1}^{(\beta)}(U)V$ be a convergent net in the ultraweak topology. Now $\phi_1(A_{\beta}) = f_0^{(\beta)}(U)$, $\phi_1(A_{\beta}V) = f_{-1}^{(\beta)}(U)$ and $\phi_1(A_{\beta}V^{-1}) = f_1^{(\beta)}(U)$ Since ϕ_1 is a normal map, which implies that $f_0^{(\beta)}(U)$, $f_1^{(\beta)}(U)$ and $f_{-1}^{(\beta)}(U)$ (all of which are elements of $L^{\infty}(\mathbb{T})$) are ultraweakly convergent, to $f_0(U)$, $f_1(U)$, $f_{-1}(U)$ (say), and clearly $f_{-1}(t) = \overline{f_1(t + \theta)}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

B.Das

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

Suppose f_1, f_0 are as defined before and $A \in \mathfrak{X}$. Define

$$A_{s,t} := f_{-1}(e^{2\pi i s}U)V^{-1}e^{-2\pi i t} + f_0(e^{2\pi i s}U) + f_1(e^{2\pi i s}U)Ve^{2\pi i t}.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Suppose $s, s' \in [0, 1)$ be such that $|s - s'| \le \frac{\epsilon}{4}$ where $0 < \epsilon < \theta$, and $|supp(f_1)| < \epsilon$, where |C| denotes the Lebesgue measure of a Borel subset $C \subseteq \mathbb{R}$. Then $A_{s,t} \cdot A_{s',t'} \in \mathfrak{X}$.

B.Das

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

Suppose f_1, f_0 are as defined before and $A \in \mathfrak{X}$. Define

$$A_{s,t} := f_{-1}(e^{2\pi i s}U)V^{-1}e^{-2\pi i t} + f_0(e^{2\pi i s}U) + f_1(e^{2\pi i s}U)Ve^{2\pi i t}.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Suppose $s, s' \in [0, 1)$ be such that $|s - s'| \le \frac{\epsilon}{4}$ where $0 < \epsilon < \theta$, and $|supp(f_1)| < \epsilon$, where |C| denotes the Lebesgue measure of a Borel subset $C \subseteq \mathbb{R}$. Then $A_{s,t} \cdot A_{s',t'} \in \mathfrak{X}$.

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

Suppose f_1, f_0 are as defined before and $A \in \mathfrak{X}$. Define

$$A_{s,t} := f_{-1}(e^{2\pi i s}U)V^{-1}e^{-2\pi i t} + f_0(e^{2\pi i s}U) + f_1(e^{2\pi i s}U)Ve^{2\pi i t}$$

Suppose s, s' \in [0, 1) be such that $|s - s'| \leq \frac{\epsilon}{4}$ where $0 < \epsilon < \theta$, and $|supp(f_1)| < \epsilon$, where |C| denotes the Lebesgue measure of a Borel subset $C \subseteq \mathbb{R}$. Then $A_{s,t} \cdot A_{s',t'} \in \mathfrak{X}$.

Proof.

It suffices to show that the coefficient of V^2 in $A_{s,t} \cdot A_{s',t'}$ is zero. By a direct computation, the coefficient of V^2 is $g(I) := f_1(s+I)f_1(s'+I-\theta)e^{2\pi i(t+t')}$. But $|(s+I) - (s'+I-\theta)| = |\theta + s - s'| > \epsilon$. Now by hypothesis, we have $|supp(f_1)| < \epsilon$, so that $f_1(s+I) \cdot f_1(s'+I-\theta) = 0$ and hence the lemma is proved.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

B.Da

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

Suppose $A = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $f_1(I)f_1(I + \theta) = 0$, for $I \in [0, 1]$. Then $A^{2n} \in \mathfrak{X}$, for $n \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

B.Da

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

Suppose $A = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $f_1(I)f_1(I + \theta) = 0$, for $I \in [0, 1]$. Then $A^{2n} \in \mathfrak{X}$, for $n \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

B.Da

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

Suppose $A = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $f_1(I)f_1(I + \theta) = 0$, for $I \in [0, 1]$. Then $A^{2n} \in \mathfrak{X}$, for $n \in \mathbb{N}$.

Proof.

The coefficient of V^2 in A^2 is $f_1(l)f_1(l+\theta)$ for $l \in [0,1)$ and this is zero by the hypoethesis. Hence $A^2 \in \mathfrak{X}$. The coefficient of V in A^2 is $f_1^{(2)}(l) := f_1(f_0 + \tau_\theta(f_0))$, where τ_θ is left translation by θ . We have $f_1^{(2)}(l)f_1^{(2)}(l+\theta) = 0$, so that applying the same argument as before, we conclude that $A^4 \in \mathfrak{X}$. Proceeding like this we get the required result. \Box

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lemma

Suppose
$$P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$$
, such that $P^2 = P$ and $supp(f_1)| < \epsilon$. Then $(A_{s,t}(P)) \land (A_{s',t'}(P)) \in \mathfrak{X}$ for $|s - s'| < \frac{\epsilon}{4}$.

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

B.Das

Interplay between Geometry and Probability

asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lemma

Suppose
$$P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$$
, such that $P^2 = P$ and $supp(f_1)| < \epsilon$. Then $(A_{s,t}(P)) \land (A_{s',t'}(P)) \in \mathfrak{X}$ for $|s - s'| < \frac{\epsilon}{4}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

B.Da

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f_{-1}^{(A)}(U)V^{-1} + f_0^{(A)}(U) + f_1^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{-1}^{(A)}, f_0^{(A)}, f_1^{(A)})$ satisfying the conditions described before. Then $A \le A_{s,t}(P)$ and $A \le A_{s',t'}(P)$ if and only if the following hold: For $I \in [0, 1)$,

B.Das

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f_{-1}^{(A)}(U)V^{-1} + f_0^{(A)}(U) + f_1^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{-1}^{(A)}, f_0^{(A)}, f_1^{(A)})$ satisfying the conditions described before. Then $A \le A_{s,t}(P)$ and $A \le A_{s',t'}(P)$ if and only if the following hold: For $l \in [0, 1)$, $f_1(s + l)f_1^{(A)}(l - \theta) = 0$:

B.Das

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f_{-1}^{(A)}(U)V^{-1} + f_0^{(A)}(U) + f_1^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{-1}^{(A)}, f_0^{(A)}, f_1^{(A)})$ satisfying the conditions described before. Then $A \le A_{s,t}(P)$ and $A \le A_{s',t'}(P)$ if and only if the following hold: For $l \in [0, 1)$,

$$f_1(s+l)f_1^{(A)}(l-\theta) = 0;$$

$$f_{-1}(s+l)f_{-1}^{(A)}(l+\theta) = 0;$$

B.Das

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f_{-1}^{(A)}(U)V^{-1} + f_0^{(A)}(U) + f_1^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{-1}^{(A)}, f_0^{(A)}, f_1^{(A)})$ satisfying the conditions described before. Then $A \le A_{s,t}(P)$ and $A \le A_{s',t'}(P)$ if and only if the following hold: For $l \in [0, 1)$,

1
$$f_1(s+l)f_1^{(A)}(l-\theta) = 0;$$

2 $f_{-1}(s+l)f_{-1}^{(A)}(l+\theta) = 0;$
3 $f_0(s+l)f_0^{(A)}(l) + f_1(s+l)f_{-1}^{(A)}(l-\theta)e^{2\pi i t} + f_{-1}(s+l)f_1^{(A)}(l+\theta)e^{-2\pi i t} = f_0^{(A)}(l);$

B.Das

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f_{-1}^{(A)}(U)V^{-1} + f_0^{(A)}(U) + f_1^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{-1}^{(A)}, f_0^{(A)}, f_1^{(A)})$ satisfying the conditions described before. Then $A \le A_{s,t}(P)$ and $A \le A_{s',t'}(P)$ if and only if the following hold: For $l \in [0, 1)$,

$$\begin{array}{l} \mathbf{1} \quad f_{1}(s+l)f_{1}^{(A)}(l-\theta) = 0; \\ \mathbf{2} \quad f_{-1}(s+l)f_{-1}^{(A)}(l+\theta) = 0; \\ \mathbf{3} \quad f_{0}(s+l)f_{0}^{(A)}(l) + f_{1}(s+l)f_{-1}^{(A)}(l-\theta)e^{2\pi i t} + f_{-1}(s+l)f_{1}^{(A)}(l+\theta)e^{-2\pi i t} = f_{0}^{(A)}(l); \\ \mathbf{4} \quad f_{1}(s+l)f_{0}^{(A)}(l-\theta)e^{2\pi i t} + f_{0}(s+l)f_{1}^{(A)}(l) = f_{1}^{(A)}(l); \end{array}$$
B.Das

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f_{-1}^{(A)}(U)V^{-1} + f_0^{(A)}(U) + f_1^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{-1}^{(A)}, f_0^{(A)}, f_1^{(A)})$ satisfying the conditions described before. Then $A \le A_{s,t}(P)$ and $A \le A_{s',t'}(P)$ if and only if the following hold: For $l \in [0, 1)$,

$$\begin{array}{l} \mathbf{f}_{1}(s+l)f_{1}^{(A)}(l-\theta) = 0; \\ \mathbf{f}_{-1}(s+l)f_{-1}^{(A)}(l+\theta) = 0; \\ \mathbf{f}_{0}(s+l)f_{0}^{(A)}(l) + f_{1}(s+l)f_{-1}^{(A)}(l-\theta)e^{2\pi i t} + f_{-1}(s+l)f_{1}^{(A)}(l+\theta)e^{-2\pi i t} = f_{0}^{(A)}(l); \\ \mathbf{f}_{1}(s+l)f_{0}^{(A)}(l-\theta)e^{2\pi i t} + f_{0}(s+l)f_{1}^{(A)}(l) = f_{1}^{(A)}(l); \\ \mathbf{f}_{-1}(s+l)f_{0}^{(A)}(l+\theta)e^{-2\pi i t} + f_{0}(s+l)f_{-1}^{(A)}(l) = f_{-1}^{(A)}(l); \end{array}$$

B.Das

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f_{-1}^{(A)}(U)V^{-1} + f_0^{(A)}(U) + f_1^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{-1}^{(A)}, f_0^{(A)}, f_1^{(A)})$ satisfying the conditions described before. Then $A \le A_{s,t}(P)$ and $A \le A_{s',t'}(P)$ if and only if the following hold: For $l \in [0, 1)$,

$$\begin{array}{l} \mathbf{1} \quad f_{1}(s+l)f_{1}^{(A)}(l-\theta) = 0; \\ \mathbf{2} \quad f_{-1}(s+l)f_{-1}^{(A)}(l+\theta) = 0; \\ \mathbf{3} \quad f_{0}(s+l)f_{0}^{(A)}(l) + f_{1}(s+l)f_{-1}^{(A)}(l-\theta)e^{2\pi i t} + f_{-1}(s+l)f_{1}^{(A)}(l+\theta)e^{-2\pi i t} = f_{0}^{(A)}(l); \\ \mathbf{3} \quad f_{1}(s+l)f_{0}^{(A)}(l-\theta)e^{2\pi i t} + f_{0}(s+l)f_{1}^{(A)}(l) = f_{1}^{(A)}(l); \\ \mathbf{3} \quad f_{-1}(s+l)f_{0}^{(A)}(l+\theta)e^{-2\pi i t} + f_{0}(s+l)f_{-1}^{(A)}(l) = f_{-1}^{(A)}(l); \\ \mathbf{3} \quad f_{1}(s'+l)f_{1}^{(A)}(l-\theta) = 0; \\ \end{array}$$

B.Das

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f_{-1}^{(A)}(U)V^{-1} + f_0^{(A)}(U) + f_1^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{-1}^{(A)}, f_0^{(A)}, f_1^{(A)})$ satisfying the conditions described before. Then $A \le A_{s,t}(P)$ and $A \le A_{s',t'}(P)$ if and only if the following hold: For $I \in [0, 1)$, $f_0(s + I)f_{-1}^{(A)}(I - \theta) = 0$.

$$\begin{array}{l} f_{1}(s+1)f_{1}^{(A)}(l-\theta) = 0; \\ f_{-1}(s+1)f_{0}^{(A)}(l+\theta) = 0; \\ f_{0}(s+1)f_{0}^{(A)}(l) + f_{1}(s+1)f_{-1}^{(A)}(l-\theta)e^{2\pi i t} + f_{-1}(s+1)f_{1}^{(A)}(l+\theta)e^{-2\pi i t} = f_{0}^{(A)}(l); \\ f_{1}(s+1)f_{0}^{(A)}(l-\theta)e^{2\pi i t} + f_{0}(s+1)f_{1}^{(A)}(l) = f_{1}^{(A)}(l); \\ f_{-1}(s+1)f_{0}^{(A)}(l+\theta)e^{-2\pi i t} + f_{0}(s+1)f_{-1}^{(A)}(l) = f_{-1}^{(A)}(l); \\ f_{1}(s'+l)f_{1}^{(A)}(l-\theta) = 0; \\ f_{-1}(s'+l)f_{-1}^{(A)}(l+\theta) = 0; \\ \end{array}$$

B.Das

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f^{(A)}(U)V^{-1} + f^{(A)}(U) + f^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)})$ satisfying the conditions described before. Then $A \leq A_{s,t}(P)$ and $A \leq A_{A'}(P)$ if and only if the following hold: For $l \in [0, 1)$, $f_1(s+l)f_1^{(A)}(l-\theta) = 0;$ 2 $f_{-1}(s+l)f_{-1}^{(A)}(l+\theta) = 0;$ $f_0(s+l)f_0^{(A)}(l) + f_1(s+l)f_1^{(A)}(l-\theta)e^{2\pi i t} + f_{-1}(s+l)f_1^{(A)}(l+\theta)e^{-2\pi i t} = f_0^{(A)}(l);$ 4 $f_1(s+l)f_0^{(A)}(l-\theta)e^{2\pi it} + f_0(s+l)f_1^{(A)}(l) = f_1^{(A)}(l)$ 5 $f_{-1}(s+l)f_0^{(A)}(l+\theta)e^{-2\pi it} + f_0(s+l)f_{-1}^{(A)}(l) = f_{-1}^{(A)}(l)$ 6 $f_1(s'+l)f_1^{(A)}(l-\theta) = 0;$ 7 $f_{-1}(s'+l)f_{-1}^{(A)}(l+\theta) = 0$: **B** $f_0(s'+l)f_0^{(A)}(l) + f_1(s'+l)f_1^{(A)}(l-\theta)e^{2\pi it'} + f_{-1}(s'+l)f_0^{(A)}(l+\theta)e^{-2\pi it'} =$ $f_{a}^{(A)}(I)$:

B.Das

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f^{(A)}(U)V^{-1} + f^{(A)}(U) + f^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)})$ satisfying the conditions described before. Then $A \leq A_{s,t}(P)$ and $A \leq A_{A'}(P)$ if and only if the following hold: For $l \in [0, 1)$, $f_1(s+l)f_1^{(A)}(l-\theta) = 0;$ 2 $f_{-1}(s+l)f_{-1}^{(A)}(l+\theta) = 0;$ **3** $f_0(s+l)f_0^{(A)}(l)+f_1(s+l)f_1^{(A)}(l-\theta)e^{2\pi it}+f_{-1}(s+l)f_1^{(A)}(l+\theta)e^{-2\pi it}=f_0^{(A)}(l);$ 4 $f_1(s+l)f_0^{(A)}(l-\theta)e^{2\pi it} + f_0(s+l)f_1^{(A)}(l) = f_1^{(A)}(l)$ 5 $f_{-1}(s+l)f_0^{(A)}(l+\theta)e^{-2\pi it} + f_0(s+l)f_{-1}^{(A)}(l) = f_{-1}^{(A)}(l)$ 6 $f_1(s'+l)f_1^{(A)}(l-\theta) = 0;$ 7 $f_{-1}(s'+l)f_{-1}^{(A)}(l+\theta) = 0$: 8 $f_0(s'+l)f_0^{(A)}(l) + f_1(s'+l)f_{-1}^{(A)}(l-\theta)e^{2\pi it'} + f_{-1}(s'+l)f_1^{(A)}(l+\theta)e^{-2\pi it'} =$ $f_{0}^{(A)}(I);$ 9 $f_1(s'+l)f_2^{(A)}(l-\theta)e^{2\pi it'} + f_0(s'+l)f_1^{(A)}(l) = f_1^{(A)}(l)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

B.Das

Lemma

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ and $A = f^{(A)}(U)V^{-1} + f^{(A)}(U) + f^{(A)}(U)V$ be projections, (f_{-1}, f_0, f_1) and $(f_{1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)})$ satisfying the conditions described before. Then $A \leq A_{s,t}(P)$ and $A \leq A_{A'}(P)$ if and only if the following hold: For $l \in [0, 1)$, $f_1(s+l)f_1^{(A)}(l-\theta) = 0;$ 2 $f_{-1}(s+l)f_{-1}^{(A)}(l+\theta) = 0;$ B $f_0(s+l)f_0^{(A)}(l)+f_1(s+l)f_1^{(A)}(l-\theta)e^{2\pi it}+f_{-1}(s+l)f_1^{(A)}(l+\theta)e^{-2\pi it}=f_0^{(A)}(l);$ 4 $f_1(s+l)f_0^{(A)}(l-\theta)e^{2\pi it} + f_0(s+l)f_1^{(A)}(l) = f_1^{(A)}(l)$ 5 $f_{-1}(s+l)f_0^{(A)}(l+\theta)e^{-2\pi it} + f_0(s+l)f_{-1}^{(A)}(l) = f_{-1}^{(A)}(l)$ 6 $f_1(s'+l)f_1^{(A)}(l-\theta) = 0;$ 7 $f_{-1}(s'+l)f_{-1}^{(A)}(l+\theta) = 0$: 8 $f_0(s'+l)f_0^{(A)}(l) + f_1(s'+l)f_{-1}^{(A)}(l-\theta)e^{2\pi it'} + f_{-1}(s'+l)f_1^{(A)}(l+\theta)e^{-2\pi it'} =$ $f_{0}^{(A)}(I);$ 9 $f_1(s'+l)f_0^{(A)}(l-\theta)e^{2\pi it'} + f_0(s'+l)f_1^{(A)}(l) = f_1^{(A)}(l)$ $\mathbf{I}_{-1}(s'+l)f_0^{(A)}(l+\theta)e^{-2\pi it'}+f_0(s'+l)f_{-1}^{(A)}(l)=f_{-1}^{(A)}(l)$

くロン 人間 とくほう 人 思 くらく

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

For two projections A and B such that

$$A = f_{-1}^{(A)}(U)V^{-1} + f_0^{(A)}(U) + f_1^{(A)}(U)V,$$

$$B = f_{-1}^{(B)}(U)V^{-1} + f_0^{(B)}(U) + f_1^{(B)}(U)V;$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

we have $A \leq B$ if and only if for $l \in [0, 1)$, we have:

B.Das

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion or manifolds

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

For two projections A and B such that

$$A = f_{-1}^{(A)}(U)V^{-1} + f_{0}^{(A)}(U) + f_{1}^{(A)}(U)V,$$

$$B = f_{-1}^{(B)}(U)V^{-1} + f_{0}^{(B)}(U) + f_{1}^{(B)}(U)V;$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

we have $A \leq B$ if and only if for $l \in [0, 1)$, we have:

• $f_1^{(B)}(I)f_1^{(A)}(I-\theta) = 0;$

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

For two projections A and B such that

$$A = f_{-1}^{(A)}(U)V^{-1} + f_{0}^{(A)}(U) + f_{1}^{(A)}(U)V,$$

$$B = f_{-1}^{(B)}(U)V^{-1} + f_{0}^{(B)}(U) + f_{1}^{(B)}(U)V;$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

we have $A \leq B$ if and only if for $l \in [0, 1)$, we have:

$$f_1^{(B)}(I)f_1^{(A)}(I-\theta) = 0;$$

$$f_1^{(B)}(I+\theta)f_1^{(A)}(I+2\theta) = 0;$$

B.Das

Interplay between Geometry and Probability

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

For two projections A and B such that

$$A = f_{-1}^{(A)}(U)V^{-1} + f_{0}^{(A)}(U) + f_{1}^{(A)}(U)V,$$

$$B = f_{-1}^{(B)}(U)V^{-1} + f_{0}^{(B)}(U) + f_{1}^{(B)}(U)V;$$

we have $A \leq B$ if and only if for $l \in [0, 1)$, we have:

$$f_1^{(B)}(l)f_1^{(A)}(l-\theta) = 0; f_1^{(B)}(l+\theta)f_1^{(A)}(l+2\theta) = 0; f_0^{(B)}(l)f_0^{A}(l) + f_1^{(B)}(l)f_0^{(A)}(l) + f_1^{(B)}(l+\theta)f_1^{(A)}(l+\theta) = f_0^{(A)}(l)$$

B.Das

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

For two projections A and B such that

$$A = f_{-1}^{(A)}(U)V^{-1} + f_{0}^{(A)}(U) + f_{1}^{(A)}(U)V,$$

$$B = f_{-1}^{(B)}(U)V^{-1} + f_{0}^{(B)}(U) + f_{1}^{(B)}(U)V;$$

we have $A \leq B$ if and only if for $l \in [0, 1)$, we have:

B.Das

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

For two projections A and B such that

$$A = f_{-1}^{(A)}(U)V^{-1} + f_{0}^{(A)}(U) + f_{1}^{(A)}(U)V,$$

$$B = f_{-1}^{(B)}(U)V^{-1} + f_{0}^{(B)}(U) + f_{1}^{(B)}(U)V;$$

we have $A \leq B$ if and only if for $l \in [0, 1)$, we have:

B.Das

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion or manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

For two projections A and B such that

$$A = f_{-1}^{(A)}(U)V^{-1} + f_{0}^{(A)}(U) + f_{1}^{(A)}(U)V,$$

$$B = f_{-1}^{(B)}(U)V^{-1} + f_{0}^{(B)}(U) + f_{1}^{(B)}(U)V;$$

we have $A \leq B$ if and only if for $l \in [0, 1)$, we have:

B.Das

Interplay between Geometry and Probability:

Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus

Lemma

For two projections A and B such that

$$A = f_{-1}^{(A)}(U)V^{-1} + f_{0}^{(A)}(U) + f_{1}^{(A)}(U)V,$$

$$B = f_{-1}^{(B)}(U)V^{-1} + f_{0}^{(B)}(U) + f_{1}^{(B)}(U)V;$$

we have $A \leq B$ if and only if for $l \in [0, 1)$, we have:

Lemma

Let $P = f_{-1}(U)V^{-1} + f_0(U) + f_1(U)V$ such that P is a projection and suppose $f_0(t) = 0$ for some t. Then $f_1(t) = f_1(t + \theta) = 0$.