Exit time assymptotics on non-commutative 2-torus.

Biswarup Das
(Joint work with Debashish Goswami)

> Statistics and Mathematics Unit Indian Statistical Institute, Kolkata biswarup_r@isical.ac.in

August 17, 2010

The purpose of this talk is to establish an analogue of exit time asymptotics of Brownian motion on manifolds, in the set-up of non-commutative 2-torus. Using these asymptotics, we will try to formulate definitions of certain geometric invariants e.g. intrinsic dimension, mean curvature etc for the non-commutative 2-torus.

Outline of the talk

1 Interplay between Geometry and Probability: ■ Exit time asymptotics of Brownian motion on manifolds.

2 Formulation of quantum exit time.

Outline of the talk

1 Interplay between Geometry and Probability:
■ Exit time asymptotics of Brownian motion on manifolds.

2 Formulation of quantum exit time.

3 A case study:Exit time asymptotics on the non-commutative 2-torus

Exit time asymptotics of Brownian motion on manifolds:

We begin with the following well-known proposition:

Pinsky,1994

Consider a hypersurface $M \subseteq \mathbb{R}^{d}$ with the Brownian motion process X_{t}^{m} starting at m. Let $T_{\varepsilon}=\inf \left\{t>0:\left\|X_{t}^{m}-m\right\|=\varepsilon\right\}$ be the exit time of the motion from an extrinsic ball of radius ε around m. Then we have

$$
\mathbb{E}_{m}\left(T_{\varepsilon}\right)=\varepsilon^{2} / 2(d-1)+\varepsilon^{4} H^{2} / 8(d+1)+O\left(\varepsilon^{5}\right)
$$

where H is the mean curvature of M.

Gray,1973
Let $V_{m}(\epsilon)$ denote the volume of a ball of radius ϵ around $m \in M$. Let n be the intrinsic dimension of the manifold. Then we have

$$
V_{m}(\epsilon)=\frac{\alpha_{n} \epsilon^{n}}{n}\left(1-K_{1} \epsilon^{2}+K_{2} \epsilon^{4}+O\left(\epsilon^{6}\right)\right)_{m}
$$

where $\alpha_{n}:=2 \Gamma\left(\frac{1}{2}\right)^{n} \Gamma\left(\frac{n}{2}\right)^{-1}$ and K_{1}, K_{2} are constants depending on the manifold.

Gray,1973
Let $V_{m}(\epsilon)$ denote the volume of a ball of radius ϵ around $m \in M$. Let n be the intrinsic dimension of the manifold. Then we have

$$
V_{m}(\epsilon)=\frac{\alpha_{n} \epsilon^{n}}{n}\left(1-K_{1} \epsilon^{2}+K_{2} \epsilon^{4}+O\left(\epsilon^{6}\right)\right)_{m}
$$

where $\alpha_{n}:=2 \Gamma\left(\frac{1}{2}\right)^{n} \Gamma\left(\frac{n}{2}\right)^{-1}$ and K_{1}, K_{2} are constants depending on the manifold.

The intrinsic dimension n of the hypersurface M is the unique integer n
satisfying $\lim _{\epsilon \rightarrow 0} \frac{\mathbb{E}\left(\tau_{\epsilon}\right)}{V_{\epsilon}^{\frac{2}{m}}}=\left\{\begin{array}{l}\infty \text { if } m \text { is less than } n ; \\ \neq 0 \text { if } m \neq n ; \\ =0 \text { if } m>n .\end{array}\right.$
Observe that $\frac{V(\epsilon)^{\frac{2}{n}}}{\epsilon^{2}} \rightarrow\left(\frac{\alpha_{n}}{n}\right)^{\frac{2}{n}}$ and $\frac{V\left(\epsilon \epsilon \frac{4}{n}\right.}{\epsilon^{4}} \rightarrow\left(\frac{\alpha_{n}}{n}\right)^{\frac{4}{n}}$ as $\epsilon \rightarrow 0^{+}$.

Interplay between Geometry and
Probability:
Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case

study:Exit

time

asymptotics on the noncommutativ 2-torus

Observe that $\frac{V\left(\epsilon \epsilon^{\frac{2}{n}}\right.}{\epsilon^{2}} \rightarrow\left(\frac{\alpha_{n}}{n}\right)^{\frac{2}{n}}$ and $\frac{V\left(\epsilon \epsilon^{\frac{4}{n}}\right.}{\epsilon^{4}} \rightarrow\left(\frac{\alpha_{n}}{n}\right)^{\frac{4}{n}}$ as $\epsilon \rightarrow 0^{+}$.
In view of this, the asymptotic expression appearing in Pinsky's result can be recast as

$$
\mathbb{E}\left(\tau_{\epsilon}\right)=\frac{1}{2(d-1)}\left(\frac{V(\epsilon) n}{\alpha_{n}}\right)^{\frac{2}{n}}+\frac{H^{2}}{8(d+1)}\left(\frac{V(\epsilon) n}{\alpha_{n}}\right)^{\frac{4}{n}}+O\left(V(\epsilon)^{\frac{5}{n}}\right)
$$

Observe that $\frac{V\left(\epsilon \epsilon^{\frac{2}{n}}\right.}{\epsilon^{2}} \rightarrow\left(\frac{\alpha_{n}}{n}\right)^{\frac{2}{n}}$ and $\frac{V\left(\epsilon \epsilon^{\frac{4}{n}}\right.}{\epsilon^{4}} \rightarrow\left(\frac{\alpha_{n}}{n}\right)^{\frac{4}{n}}$ as $\epsilon \rightarrow 0^{+}$.
In view of this, the asymptotic expression appearing in Pinsky's result can be recast as

$$
\mathbb{E}\left(\tau_{\epsilon}\right)=\frac{1}{2(d-1)}\left(\frac{V(\epsilon) n}{\alpha_{n}}\right)^{\frac{2}{n}}+\frac{H^{2}}{8(d+1)}\left(\frac{V(\epsilon) n}{\alpha_{n}}\right)^{\frac{4}{n}}+O\left(V(\epsilon)^{\frac{5}{n}}\right)
$$

In particular, we get the extrinsic dimension d and the mean curvature H by the following formulae:

Observe that $\frac{V(\epsilon)^{\frac{2}{n}}}{\epsilon^{2}} \rightarrow\left(\frac{\alpha_{n}}{n}\right)^{\frac{2}{n}}$ and $\frac{V(\epsilon)^{\frac{4}{n}}}{\epsilon^{4}} \rightarrow\left(\frac{\alpha_{n}}{n}\right)^{\frac{4}{n}}$ as $\epsilon \rightarrow 0^{+}$.
In view of this, the asymptotic expression appearing in Pinsky's result can be recast as

$$
\mathbb{E}\left(\tau_{\epsilon}\right)=\frac{1}{2(d-1)}\left(\frac{V(\epsilon) n}{\alpha_{n}}\right)^{\frac{2}{n}}+\frac{H^{2}}{8(d+1)}\left(\frac{V(\epsilon) n}{\alpha_{n}}\right)^{\frac{4}{n}}+O\left(V(\epsilon)^{\frac{5}{n}}\right)
$$

In particular, we get the extrinsic dimension d and the mean curvature H by the following formulae:

$$
\begin{equation*}
d=\frac{1}{2}\left(1+\lim _{\epsilon \rightarrow 0} \frac{1}{\mathbb{E}\left(\tau_{\epsilon}\right)}\left(\frac{n V(\epsilon)}{\alpha_{n}}\right)^{\frac{2}{n}}\right) \tag{1}
\end{equation*}
$$

Observe that $\frac{V(\epsilon)^{\frac{2}{n}}}{\epsilon^{2}} \rightarrow\left(\frac{\alpha_{n}}{n}\right)^{\frac{2}{n}}$ and $\frac{V(\epsilon)^{\frac{4}{n}}}{\epsilon^{4}} \rightarrow\left(\frac{\alpha_{n}}{n}\right)^{\frac{4}{n}}$ as $\epsilon \rightarrow 0^{+}$.
In view of this, the asymptotic expression appearing in Pinsky's result can be recast as

$$
\mathbb{E}\left(\tau_{\epsilon}\right)=\frac{1}{2(d-1)}\left(\frac{V(\epsilon) n}{\alpha_{n}}\right)^{\frac{2}{n}}+\frac{H^{2}}{8(d+1)}\left(\frac{V(\epsilon) n}{\alpha_{n}}\right)^{\frac{4}{n}}+O\left(V(\epsilon)^{\frac{5}{n}}\right)
$$

In particular, we get the extrinsic dimension d and the mean curvature H by the following formulae:

$$
\begin{gather*}
d=\frac{1}{2}\left(1+\lim _{\epsilon \rightarrow 0} \frac{1}{\mathbb{E}\left(\tau_{\epsilon}\right)}\left(\frac{n V(\epsilon)}{\alpha_{n}}\right)^{\frac{2}{n}}\right) \tag{1}\\
H^{2}=8(d+1)\left(\frac{\alpha_{n}}{n}\right)^{\frac{4}{n}} \lim _{\epsilon \rightarrow 0} \frac{\mathbb{E}\left(\tau_{\epsilon}\right)-\frac{1}{2(d-1)}\left(\frac{n V(\epsilon)}{\alpha_{n}}\right)^{\frac{2}{n}}}{V(\epsilon)^{\frac{4}{n}}} . \tag{2}
\end{gather*}
$$

Formulation of quantum exit time.

Suppose that M is a Riemannian manifold of Dimension n. Let B_{r}^{x} be a ball of radius r around $x \in M$. Choose a coordinate neighbourhood $\left(U_{x} ; x_{1}, x_{2}, \ldots x_{n}\right)$ around x. Let W_{t}^{x} be a Brownian motion on M starting at x and $\tau_{B_{r}^{x}}$ be the exit time of the Brownian motion from the ball B_{r}^{x}.

Formulation of quantum exit time.

Suppose that M is a Riemannian manifold of Dimension n. Let B_{r}^{\times}be a ball of radius r around $x \in M$. Choose a coordinate neighbourhood ($U_{x} ; x_{1}, x_{2}, \ldots x_{n}$) around x. Let W_{t}^{x} be a Brownian motion on M starting at x and $\tau_{B_{r}^{x}}$ be the exit time of the Brownian motion from the ball B_{r}^{x}. Then we have

$$
\chi_{\left\{\tau_{B_{r}^{\times}}>t\right\}}=\bigwedge_{s \leq t}\left(\chi_{\left\{w_{s}^{\times} \in B_{r}^{\times}\right\}}\right),
$$

where \bigwedge denotes infimum.

Formulation of quantum exit time.

Suppose that M is a Riemannian manifold of Dimension n. Let B_{r}^{\times}be a ball of radius r around $x \in M$. Choose a coordinate neighbourhood ($U_{x} ; x_{1}, x_{2}, \ldots x_{n}$) around x. Let W_{t}^{x} be a Brownian motion on M starting at x and $\tau_{B_{r}^{x}}$ be the exit time of the Brownian motion from the ball B_{r}^{x}. Then we have

$$
\chi_{\left\{\tau_{B_{r}^{x}}>t\right\}}=\bigwedge_{s \leq t}\left(\chi_{\left\{w_{s}^{\times} \in B_{r}^{\times}\right\}}\right),
$$

where \bigwedge denotes infimum.
For $f \in L^{\infty}\left(U_{x}\right)$, let

$$
j_{t}(f)(x, \omega):=\chi_{u_{x}}\left(W_{t}^{x}\right) f\left(W_{t}^{x}(\omega)\right)
$$

Formulation of quantum exit time.

B.Das

Suppose that M is a Riemannian manifold of Dimension n. Let B_{r}^{x} be a ball of radius r around $x \in M$. Choose a coordinate neighbourhood $\left(U_{x} ; x_{1}, x_{2}, \ldots x_{n}\right)$ around x. Let W_{t}^{x} be a Brownian motion on M starting at x and $\tau_{B_{r}^{x}}$ be the exit time of the Brownian motion from the ball B_{r}^{x}. Then we have

$$
\chi_{\left\{\tau_{B_{r}^{x}}>t\right\}}=\bigwedge_{s \leq t}\left(\chi_{\left\{w_{s}^{\times} \in B_{r}^{\times}\right\}}\right),
$$

where \bigwedge denotes infimum.
For $f \in L^{\infty}\left(U_{x}\right)$, let

$$
j_{t}(f)(x, \omega):=\chi_{u_{x}}\left(W_{t}^{x}\right) f\left(W_{t}^{x}(\omega)\right)
$$

Note that

$$
j_{t}: L^{\infty}\left(U_{x}\right) \rightarrow L^{\infty}\left(U_{x}\right) \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{n}\right)\right)\right)
$$

since by the Wiener- Itô isomorphism, $L^{2}(\mathbb{P}) \cong \Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{n}\right)\right)$, where \mathbb{P} is the n dimensional Wiener measure.

Formulation of quantum exit time.

B.Das

Interplay

 between Geometry and Probability: Exit time asymptotics of Brownian motion on manifolds:Suppose that M is a Riemannian manifold of Dimension n. Let B_{r}^{x} be a ball of radius r around $x \in M$. Choose a coordinate neighbourhood $\left(U_{x} ; x_{1}, x_{2}, \ldots x_{n}\right)$ around x. Let W_{t}^{x} be a Brownian motion on M starting at x and $\tau_{B_{r}^{x}}$ be the exit time of the Brownian motion from the ball B_{r}^{x}. Then we have

$$
\chi_{\left\{\tau_{B_{r}^{x}}>t\right\}}=\bigwedge_{s \leq t}\left(\chi_{\left\{w_{s}^{\times} \in B_{r}^{\times}\right\}}\right),
$$

where \bigwedge denotes infimum.
For $f \in L^{\infty}\left(U_{x}\right)$, let

$$
j_{t}(f)(x, \omega):=\chi_{u_{x}}\left(W_{t}^{x}\right) f\left(W_{t}^{x}(\omega)\right) .
$$

Note that

$$
j_{t}: L^{\infty}\left(U_{x}\right) \rightarrow L^{\infty}\left(U_{x}\right) \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{n}\right)\right)\right)
$$

since by the Wiener- Itô isomorphism, $L^{2}(\mathbb{P}) \cong \Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{n}\right)\right)$, where \mathbb{P} is the n dimensional Wiener measure.
So one may write

$$
\chi_{\left\{\tau_{B_{r}^{X}}>t\right\}}(\cdot)=\bigwedge_{s \leq t} j_{s}\left(\chi_{B_{r}^{x}}\right)(x, \cdot)=\bigwedge_{s \leq t}\left(\left(e v_{x} \otimes i d\right) \circ j_{s}\left(\chi_{B_{r}^{X}}\right)\right)(\cdot)
$$

Thus we may view $\tau_{B_{r}^{x}}$ as a spectral family in $L^{\infty}\left(U_{x}\right) \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{n}\right)\right)\right)$ by the prescription:

$$
\tau_{B_{r}^{x}}([0, t))=\mathbf{1}-\wedge_{s \leq t}\left(j_{s}\left(\chi_{B_{r}^{x}}\right)\right) .
$$

Thus we may view $\tau_{B_{r}^{x}}$ as a spectral family in $L^{\infty}\left(U_{x}\right) \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{n}\right)\right)\right)$ by the prescription:

$$
\tau_{B_{r}^{x}}([0, t))=\mathbf{1}-\wedge_{s \leq t}\left(j_{s}\left(\chi_{B_{r}^{x}}\right)\right) .
$$

Moreover, we have:

$$
\mathbb{E}\left(\tau_{B_{r}^{x}}\right)=\int_{0}^{\infty} \mathbb{P}\left(\tau_{B_{r}^{\times}}>t\right) d t=\int_{0}^{\infty}\left\langle e(0),\left\{\left(e v_{x} \otimes 1\right)\left(\wedge_{s \leq t} j_{s}\left(\chi_{B_{r}^{x}}\right)\right)\right\} e(0)\right\rangle d t .
$$

The exit time asymptotics of the Brownian motion amounts to studying the behaviour of the quantity $\mathbb{E}\left(\tau_{B_{r}^{x}}\right)$ as $r \rightarrow 0$.

The exit time asymptotics of the Brownian motion amounts to studying the behaviour of the quantity $\mathbb{E}\left(\tau_{B_{r}^{x}}\right)$ as $r \rightarrow 0$.
Alternatively:
Choose a sequence $\left(x_{n}\right)_{n} \in M$ and positive numbers ϵ_{n} such that $x_{n} \rightarrow x$ and $\epsilon_{n} \rightarrow 0$. Now for large $n, \chi_{\left\{w_{s}^{\chi_{n}} \in B_{e_{n}}^{\times_{n}}\right\}}(\cdot) \stackrel{\mathcal{L}}{=} \chi_{\left\{w_{s}^{\times} \in B_{\epsilon_{n}}^{\times}\right\}}(\cdot)$ for each $s \geq 0$. Thus,

$$
\mathbb{E}\left(\tau_{B_{e_{n}}^{x_{n}}}\right)=\int_{0}^{\infty}\left\langle e(0),\left\{\left(e v_{x_{n}} \otimes i d\right)\left(\wedge_{s \leq t} j_{s}\left(\chi_{B_{\epsilon_{n}^{x_{n}}}}\right)\right)\right\} e(0)\right\rangle d t=\mathbb{E}\left(\tau_{B_{\epsilon_{n}}^{\times}}\right)
$$

i.e. the asymptotic behaviour of $\mathbb{E}\left(\tau_{B_{\epsilon_{n}}^{\chi_{n}}}\right)$ and $\mathbb{E}\left(\tau_{B_{\epsilon_{n}}}\right)$ will be the same.

Note that the points of M are in $1-1$ correspondence with the pure states of $L^{\infty}(M)$ and $\left\{P_{n}=\chi_{B_{\epsilon_{n}}^{\chi_{n}}}\right\}_{n}$ is a family of projections on $L^{\infty}(M)$, so that we have:

Formulation of quantum exit time.
A case
Note that the points of M are in $1-1$ correspondence with the pure states of $L^{\infty}(M)$ and $\left\{P_{n}=\chi_{B_{e_{n}^{x}}}\right\}_{n}$ is a family of projections on $L^{\infty}(M)$, so that we have:
$e v_{x_{n}}\left(P_{n}\right)=1$;

Formulation of quantum exit time.

Note that the points of M are in $1-1$ correspondence with the pure states of $L^{\infty}(M)$ and $\left\{P_{n}=\chi_{B_{\epsilon_{n}}^{\chi_{n}}}\right\}_{n}$ is a family of projections on $L^{\infty}(M)$, so that we have:
$e v_{x_{n}}\left(P_{n}\right)=1$;
$e v_{x_{n}} \xrightarrow{\omega *} e v_{x} ;$

Formulation of quantum exit time.

A case
study:Exit
time
asymptotics
Note that the points of M are in $1-1$ correspondence with the pure states of $L^{\infty}(M)$ and $\left\{P_{n}=\chi_{B_{e_{n}}^{\chi}}\right\}_{n}$ is a family of projections on $L^{\infty}(M)$, so that we have:
$e v_{x_{n}}\left(P_{n}\right)=1$;
$e v_{x_{n}} \xrightarrow{\omega *} e v_{x} ;$
$\operatorname{vol}\left(P_{n}\right) \rightarrow 0$.

Note that the points of M are in $1-1$ correspondence with the pure states of $L^{\infty}(M)$ and $\left\{P_{n}=\chi_{B_{e_{n}}^{\chi}}\right\}_{n}$ is a family of projections on $L^{\infty}(M)$, so that we have:
$e v_{x_{n}}\left(P_{n}\right)=1$;
$e v_{x_{n}} \xrightarrow{\omega *} e v_{x} ;$
$\operatorname{vol}\left(P_{n}\right) \rightarrow 0$.
We now move into non-commutative setup.

There are several formulations of the concept of quantum stop time due to
Attal,Sinha(1998), Parthasarathy,Sinha(1987), Barnett,Wilde(1991).

There are several formulations of the concept of quantum stop time due to
Attal,Sinha(1998), Parthasarathy,Sinha(1987), Barnett,Wilde(1991).
The one most suitable for us is:

There are several formulations of the concept of quantum stop time due to
Attal,Sinha(1998), Parthasarathy,Sinha(1987), Barnett,Wilde(1991).
The one most suitable for us is:

There are several formulations of the concept of quantum stop time due to
Attal,Sinha(1998), Parthasarathy,Sinha(1987), Barnett,Wilde(1991). The one most suitable for us is:

Barnett,Wilde, 1991

Let $\left(\mathfrak{A}_{t}\right)_{t \geq 0}$ be an increasing family of von-Neumann algebras (called a filtration). A quantum random time or stop time adapted to the filtration $\left(\mathfrak{A}_{t}\right)_{t \geq 0}$ is an increasing family of projections $\left(E_{t}\right)_{t \geq 0}, E_{0}=I$ such that E_{t} is a projection in \mathfrak{A}_{t} and $E_{s} \leq E_{t}$ whenever $0 \leq s \leq t<+\infty$.

There are several formulations of the concept of quantum stop time due to
Attal,Sinha(1998), Parthasarathy,Sinha(1987), Barnett,Wilde(1991). The one most suitable for us is:

Barnett,Wilde, 1991

Let $\left(\mathfrak{A}_{t}\right)_{t \geq 0}$ be an increasing family of von-Neumann algebras (called a filtration). A quantum random time or stop time adapted to the filtration $\left(\mathfrak{A}_{t}\right)_{t \geq 0}$ is an increasing family of projections $\left(E_{t}\right)_{t \geq 0}, E_{0}=I$ such that E_{t} is a projection in \mathfrak{A}_{t} and $E_{s} \leq E_{t}$ whenever $0 \leq s \leq t<+\infty$.

Observe that by our definition, $\tau_{B_{r}^{x}}([0, t))$ is adapted to the filtration $\left(\mathfrak{A}_{t}\right)_{t \geq 0}$, where
$\mathfrak{A}_{t}:=L^{\infty}\left(U_{x}\right) \otimes B\left(\Gamma_{t]}\right)\left(\Gamma_{t]}:=\Gamma\left(L^{2}\left([0, t], \mathbb{C}^{n}\right)\right)\right)$, for $\tau_{B_{r}^{X}}([0, t]) \in \mathfrak{A}_{t} \otimes 1_{\Gamma_{[t}}$.

Suppose that we are given an E-H flow $j_{t}: \mathcal{A} \rightarrow \mathcal{A}^{\prime \prime} \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, k_{0}\right)\right)\right)$, where \mathcal{A} is a C^{*} or von-Neumann algebra. For a projection $P \in \mathcal{A}$, the family $\left\{\mathbf{1}-\wedge_{s \leq t}\left(j_{s}(P)\right)\right\}_{t \geq 0}$ defines a quantum random time adapted to the filtration $\left(\mathcal{A}^{\prime \prime} \otimes B\left(\Gamma_{t]}\right)\right)_{t \geq 0}$.

Suppose that we are given an E-H flow $j_{t}: \mathcal{A} \rightarrow \mathcal{A}^{\prime \prime} \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, k_{0}\right)\right)\right)$, where \mathcal{A} is a C^{*} or von-Neumann algebra. For a projection $P \in \mathcal{A}$, the family $\left\{\mathbf{1}-\wedge_{s \leq t}\left(j_{s}(P)\right)\right\}_{t \geq 0}$ defines a quantum random time adapted to the filtration $\left(\mathcal{A}^{\prime \prime} \otimes B\left(\Gamma_{t]}\right)\right)_{t \geq 0}$.

Suppose that we are given an E-H flow $j_{t}: \mathcal{A} \rightarrow \mathcal{A}^{\prime \prime} \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, k_{0}\right)\right)\right)$, where \mathcal{A} is a C^{*} or von-Neumann algebra. For a projection $P \in \mathcal{A}$, the family $\left\{\mathbf{1}-\wedge_{s \leq t}\left(j_{s}(P)\right)\right\}_{t \geq 0}$ defines a quantum random time adapted to the filtration $\left(\mathcal{A}^{\prime \prime} \otimes B\left(\Gamma_{t]}\right)\right)_{t \geq 0}$.

Definition

We refer to the quantum random time $\left\{1-\bigwedge_{s \leq t} j_{s}(P)\right\}_{t \geq 0}$ as the 'exit time from the projection P.

Let τ be a state (to be thought of as non-commutative volume form on a C^{*} or von Neumann algebra), and assume that we are given a family $\left\{P_{n}\right\}_{n \geq 1}$ of projections in \mathcal{A}, and a family $\left\{\omega_{n}\right\}_{n \geq 1}$ of pure states of \mathcal{A} such that

Let τ be a state (to be thought of as non-commutative volume form on a C^{*} or von Neumann algebra), and assume that we are given a family $\left\{P_{n}\right\}_{n \geq 1}$ of projections in \mathcal{A}, and a family $\left\{\omega_{n}\right\}_{n \geq 1}$ of pure states of \mathcal{A} such that

- ω_{n} is weak* convergent to a pure state ω,

Let τ be a state (to be thought of as non-commutative volume form on a C^{*} or von Neumann algebra), and assume that we are given a family $\left\{P_{n}\right\}_{n \geq 1}$ of projections in \mathcal{A}, and a family $\left\{\omega_{n}\right\}_{n \geq 1}$ of pure states of \mathcal{A} such that

- ω_{n} is weak* convergent to a pure state ω,
- $\omega_{n}\left(P_{n}\right)=1$ for all n,

Let τ be a state (to be thought of as non-commutative volume form on a C^{*} or von Neumann algebra), and assume that we are given a family $\left\{P_{n}\right\}_{n \geq 1}$ of projections in \mathcal{A}, and a family $\left\{\omega_{n}\right\}_{n \geq 1}$ of pure states of \mathcal{A} such that

- ω_{n} is weak* convergent to a pure state ω,
- $\omega_{n}\left(P_{n}\right)=1$ for all n,
- $v_{n} \equiv \tau\left(P_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Let τ be a state (to be thought of as non-commutative volume form on a C^{*} or von Neumann algebra), and assume that we are given a family $\left\{P_{n}\right\}_{n \geq 1}$ of projections in \mathcal{A}, and a family $\left\{\omega_{n}\right\}_{n \geq 1}$ of pure states of \mathcal{A} such that

- ω_{n} is weak* convergent to a pure state ω,
- $\omega_{n}\left(P_{n}\right)=1$ for all n,
- $v_{n} \equiv \tau\left(P_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Let τ be a state (to be thought of as non-commutative volume form on a C^{*} or von Neumann algebra), and assume that we are given a family $\left\{P_{n}\right\}_{n \geq 1}$ of projections in \mathcal{A}, and a family $\left\{\omega_{n}\right\}_{n \geq 1}$ of pure states of \mathcal{A} such that

■ ω_{n} is weak* convergent to a pure state ω,

- $\omega_{n}\left(P_{n}\right)=1$ for all n,

■ $v_{n} \equiv \tau\left(P_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Definition

Let $\gamma_{n}:=\int_{0}^{\infty} d t\left\langle e(0),\left(\omega_{n} \otimes i d\right) \circ \bigwedge_{s \leq t} j_{s}\left(P_{n}\right) e(0)\right\rangle$. We say that there is an exit time asymptotic for the family $\left\{\bar{P}_{n} ; \omega_{n}\right\}$ of intrinsic dimension n_{0} if

$$
\lim _{n \rightarrow \infty} \frac{\gamma_{n}}{v_{n}^{\frac{2}{m}}}=\left\{\begin{array}{l}
\infty \text { if } m \text { is just less than } n_{0} \\
\neq 0 \text { if } m \neq n \\
=0 \text { if } m>n
\end{array}\right.
$$

and

$$
\begin{equation*}
\gamma_{n}=c_{1} v_{n}^{\frac{2}{n_{0}}}+c_{2} v_{n}^{\frac{4}{n_{0}}}+\cdots c_{k} v_{n}^{\frac{2^{k}}{n_{0}}}+O\left(v_{n}^{\frac{2^{k+1}}{n_{0}}}\right) \text { as } n \rightarrow \infty . \tag{3}
\end{equation*}
$$

It is not at all clear whether such an asymptotic exists in general, and even if it exists, whether it is independent of the choice of the family $\left\{P_{n} ; \omega_{n}\right\}$. If it is the case, one may legitimately think of $c_{1}, c_{2}, \ldots c_{k} \ldots$ as geometric invariants and imitating the classical formulae as discussed before, the extrinsic dimension d and the mean curvature H of the non-commutative manifold may be defined to be

It is not at all clear whether such an asymptotic exists in general, and even if it exists, whether it is independent of the choice of the family $\left\{P_{n} ; \omega_{n}\right\}$. If it is the case, one may legitimately think of $c_{1}, c_{2}, \ldots c_{k} \ldots$ as geometric invariants and imitating the classical formulae as discussed before, the extrinsic dimension d and the mean curvature H of the non-commutative manifold may be defined to be

$$
\begin{equation*}
d:=\frac{1}{2 c_{1}}\left(\frac{n_{0}}{\alpha_{n_{0}}}\right)^{\frac{2}{n_{0}}}+1 \tag{4}
\end{equation*}
$$

It is not at all clear whether such an asymptotic exists in general, and even if it exists, whether it is independent of the choice of the family $\left\{P_{n} ; \omega_{n}\right\}$. If it is the case, one may legitimately think of $c_{1}, c_{2}, \ldots c_{k} \ldots$ as geometric invariants and imitating the classical formulae as discussed before, the extrinsic dimension d and the mean curvature H of the non-commutative manifold may be defined to be

$$
\begin{align*}
d & :=\frac{1}{2 c_{1}}\left(\frac{n_{0}}{\alpha_{n_{0}}}\right)^{\frac{2}{n_{0}}}+1, \tag{4}\\
H^{2} & :=8(d+1) c_{2}\left(\frac{\alpha_{n_{0}}}{n_{0}}\right)^{\frac{4}{n_{0}}} . \tag{5}
\end{align*}
$$

Exit time asymptotics on the non-commutative 2-torus

B.Das
Interplay
betweenGeometry

Fix an irrational number $\theta \in[0,1]$.

Exit time asymptotics on the non-commutative 2-torus

Fix an irrational number $\theta \in[0,1]$.

Definition

The non-commutative 2-torus $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$ is the universal C^{*}-algebra generated by a pair of unitaries U, V which satisfy:

$$
U V=e^{2 \pi i \theta} V U
$$

Exit time asymptotics on the non-commutative 2-torus

Fix an irrational number $\theta \in[0,1]$.

Definition

The non-commutative 2-torus $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$ is the universal C^{*}-algebra generated by a pair of unitaries U, V which satisfy:

$$
U V=e^{2 \pi i \theta} V U
$$

It can also be viewed as the "Rieffel deformation" of the commutative C^{*}-algebra $C\left(\mathbb{T}^{2}\right)$.

Exit time asymptotics on the non-commutative 2-torus

Interplay

 between Geometry andProbability:
Exit time
asymp-
totics of
Brownian motion on manifolds:

Formulation of quantum exit time.

A class of projections on $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, as given by Rieffel, is:

Exit time asymptotics on the non-commutative 2-torus

A class of projections on $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, as given by Rieffel, is: Choose an $\epsilon \ll \theta$ and let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$, where $f_{1}, f_{0} \in C\left(\mathbb{T}^{2}\right), f_{-1}(t):=\overline{f_{1}(t+\theta)}$,

Exit time asymptotics on the non-commutative 2-torus

A class of projections on $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, as given by Rieffel, is: Choose an $\epsilon \ll \theta$ and let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$, where $f_{1}, f_{0} \in C\left(\mathbb{T}^{2}\right), f_{-1}(t):=\overline{f_{1}(t+\theta)}$,

$$
f_{0}(t)=\left\{\begin{array}{l}
\epsilon^{-1} t \text { if } 0 \leq t \leq \epsilon \\
1 \text { if } \epsilon \leq t \leq \theta \\
\epsilon^{-1}(\theta+\epsilon-t) \text { if } \theta \leq t \leq \theta+\epsilon \\
0 \text { if } \theta+\epsilon \leq t \leq 1
\end{array}\right.
$$

Exit time asymptotics on the non-commutative 2-torus

A class of projections on $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, as given by Rieffel, is:
Choose an $\epsilon \ll \theta$ and let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$, where $f_{1}, f_{0} \in C\left(\mathbb{T}^{2}\right), f_{-1}(t):=\overline{f_{1}(t+\theta)}$,
$f_{0}(t)=\left\{\begin{array}{l}\epsilon^{-1} t \text { if } 0 \leq t \leq \epsilon \\ 1 \text { if } \epsilon \leq t \leq \theta \\ \epsilon^{-1}(\theta+\epsilon-t) \text { if } \theta \leq t \leq \theta+\epsilon \\ 0 \text { if } \theta+\epsilon \leq t \leq 1\end{array}\right.$
$f_{1}(t)=\left\{\begin{array}{l}\sqrt{f_{0}(t)-f_{0}(t)^{2}} \text { if } \theta \leq t \leq \theta+\epsilon \\ 0 \text { if otherwise. }\end{array}\right.$

Exit time asymptotics on the non-commutative 2-torus

- Let $t r$ be the canonical trace in $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, given by $\operatorname{tr}\left(\sum_{m, n} a_{m n} U^{m} V^{n}\right)=a_{00}$. This trace will be taken as an analogue of the volume form in $C^{*}\left(\mathbb{T}^{2}\right)$.

Exit time asymptotics on the non-commutative 2-torus

- Let tr be the canonical trace in $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, given by $\operatorname{tr}\left(\sum_{m, n} a_{m n} U^{m} V^{n}\right)=a_{00}$. This trace will be taken as an analogue of the volume form in $C^{*}\left(\mathbb{T}^{2}\right)$.
- Throughout the section, we will assume $C^{*}\left(\mathbb{T}_{\theta}^{2}\right) \subseteq B\left(L^{2}(\right.$ tr $\left.)\right)$, and let $W^{*}\left(\mathbb{T}_{\theta}^{2}\right):=\left(C^{*}\left(\mathbb{T}_{\theta}^{2}\right)\right)^{\prime \prime}$.

Exit time asymptotics on the non-commutative 2-torus

- Let tr be the canonical trace in $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, given by $\operatorname{tr}\left(\sum_{m, n} a_{m n} U^{m} V^{n}\right)=a_{00}$. This trace will be taken as an analogue of the volume form in $C^{*}\left(\mathbb{T}^{2}\right)$.
- Throughout the section, we will assume $C^{*}\left(\mathbb{T}_{\theta}^{2}\right) \subseteq B\left(L^{2}(t r)\right)$, and let $W^{*}\left(\mathbb{T}_{\theta}^{2}\right):=\left(C^{*}\left(\mathbb{T}_{\theta}^{2}\right)\right)^{\prime \prime}$.
■ For $(x, y) \in \mathbb{T}^{2}$, let $\alpha_{(x, y)}$ denote the canonical action of \mathbb{T}^{2} on $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$ given by $\alpha_{(x, y)}\left(\sum_{m, n} a_{m n} U^{m} V^{n}\right)=\sum_{m, n} x^{m} y^{n} a_{m n} U^{m} V^{n}$. Note that the automorphism α is tr-preserving. Hence it extends to a unitary operator on $L^{2}(t r)$, say $u_{(x, y)}$, and $\alpha=$ ad u, which implies that α is normal.

Exit time asymptotics on the non-commutative 2-torus

- Let $t r$ be the canonical trace in $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, given by

Interplay between Geometry and Probability: Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time. $\operatorname{tr}\left(\sum_{m, n} a_{m n} U^{m} V^{n}\right)=a_{00}$. This trace will be taken as an analogue of the volume form in $C^{*}\left(\mathbb{T}^{2}\right)$.

- Throughout the section, we will assume $C^{*}\left(\mathbb{T}_{\theta}^{2}\right) \subseteq B\left(L^{2}(\right.$ tr $\left.)\right)$, and let $W^{*}\left(\mathbb{T}_{\theta}^{2}\right):=\left(C^{*}\left(\mathbb{T}_{\theta}^{2}\right)\right)^{\prime \prime}$.
■ For $(x, y) \in \mathbb{T}^{2}$, let $\alpha_{(x, y)}$ denote the canonical action of \mathbb{T}^{2} on $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$ given by $\alpha_{(x, y)}\left(\sum_{m, n} a_{m n} U^{m} V^{n}\right)=\sum_{m, n} x^{m} y^{n} a_{m n} U^{m} V^{n}$. Note that the automorphism α is tr-preserving. Hence it extends to a unitary operator on $L^{2}(t r)$, say $u_{(x, y)}$, and $\alpha=$ ad u, which implies that α is normal.
■ On $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, there are two conditional expectations denoted by ϕ_{1}, ϕ_{2}, which are defined as:

$$
\phi_{1}(A):=\int_{0}^{1} \alpha_{\left(1, e^{2 \pi i t}\right)}(A) d t, \quad \phi_{2}(A):=\int_{0}^{1} \alpha_{\left(e^{2 \pi i t}, 1\right)}(A) d t
$$

From the normality of α, it follows easily that ϕ_{1}, ϕ_{2} are normal maps.

Exit time asymptotics on the non-commutative 2-torus

- Let $t r$ be the canonical trace in $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, given by

Interplay between Geometry and Probability Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

A case study:Exit time asymptotics on the noncommutative 2-torus $\operatorname{tr}\left(\sum_{m, n} a_{m n} U^{m} V^{n}\right)=a_{00}$. This trace will be taken as an analogue of the volume form in $C^{*}\left(\mathbb{T}^{2}\right)$.

- Throughout the section, we will assume $C^{*}\left(\mathbb{T}_{\theta}^{2}\right) \subseteq B\left(L^{2}(\right.$ tr $\left.)\right)$, and let $W^{*}\left(\mathbb{T}_{\theta}^{2}\right):=\left(C^{*}\left(\mathbb{T}_{\theta}^{2}\right)\right)^{\prime \prime}$.
■ For $(x, y) \in \mathbb{T}^{2}$, let $\alpha_{(x, y)}$ denote the canonical action of \mathbb{T}^{2} on $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$ given by $\alpha_{(x, y)}\left(\sum_{m, n} a_{m n} U^{m} V^{n}\right)=\sum_{m, n} x^{m} y^{n} a_{m n} U^{m} V^{n}$. Note that the automorphism α is tr-preserving. Hence it extends to a unitary operator on $L^{2}(t r)$, say $u_{(x, y)}$, and $\alpha=$ ad u, which implies that α is normal.
■ On $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, there are two conditional expectations denoted by ϕ_{1}, ϕ_{2}, which are defined as:

$$
\phi_{1}(A):=\int_{0}^{1} \alpha_{\left(1, e^{2 \pi i t}\right)}(A) d t, \quad \phi_{2}(A):=\int_{0}^{1} \alpha_{\left(e^{2 \pi i t}, 1\right)}(A) d t
$$

From the normality of α, it follows easily that ϕ_{1}, ϕ_{2} are normal maps.
■ For a projection P, let $A_{(s, t)}(P):=\alpha_{e^{2 \pi i s}, e^{2 \pi i t}}(P)$.

Exit time asymptotics for non-commutative 2-torus

B.Das
Interplay between
Geometry
and
Probability:
Exit timeasymp-totics ofBrownianmotion onmanifolds.
Formulationof quantum
exit time.

Exit time asymptotics for non-commutative 2-torus

Theorem

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ be a projection such that f_{0}, f_{1} satisfy the condtions described before. Consider the projections $A_{s, t}(P), A_{s^{\prime}, t^{\prime}}(P)$ such that $\left|s-s^{\prime}\right|<\frac{\epsilon}{4}$. Then

$$
\left(A_{s, t}(P)\right) \bigwedge\left(A_{s^{\prime}, t^{\prime}}(P)\right)=\chi_{s}(U)
$$

for the set $S=X_{1} \cap X_{2} \cap X_{3} \cap X_{4}$, where

$$
\begin{aligned}
& X_{1}=\tau_{-s}\left(\left\{x \mid f_{1}(x)=0\right\}\right), X_{2}:=\tau_{-s^{\prime}}\left(\left\{x \mid f_{1}(x)=0\right\}\right), \\
& X_{3}:=\tau_{-s}\left(\left\{x \mid f_{0}(x)=1\right\}\right) \text { and } X_{4}:=\tau_{-s^{\prime}}\left(\left\{x \mid f_{0}(x)=1\right\}\right) .
\end{aligned}
$$

Exit time asymptotics for non-commutative 2-torus

Theorem

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ be a projection such that f_{0}, f_{1} satisfy the condtions described before. Consider the projections $A_{s, t}(P), A_{s^{\prime}, t^{\prime}}(P)$ such that $\left|s-s^{\prime}\right|<\frac{\epsilon}{4}$. Then

$$
\left(A_{s, t}(P)\right) \bigwedge\left(A_{s^{\prime}, t^{\prime}}(P)\right)=\chi_{s}(U)
$$

for the set $S=X_{1} \cap X_{2} \cap X_{3} \cap X_{4}$, where

$$
\begin{aligned}
& X_{1}=\tau_{-s}\left(\left\{x \mid f_{1}(x)=0\right\}\right), X_{2}:=\tau_{-s^{\prime}}\left(\left\{x \mid f_{1}(x)=0\right\}\right), \\
& X_{3}:=\tau_{-s}\left(\left\{x \mid f_{0}(x)=1\right\}\right) \text { and } X_{4}:=\tau_{-s^{\prime}}\left(\left\{x \mid f_{0}(x)=1\right\}\right)
\end{aligned}
$$

It is worthwhile to note that the conclusion of the above theorem holds if we replace U by U^{k}, V by V^{k}, and θ by $\{k \theta\}(\{\cdot\}$ denoting the fractional part).

Exit time asymptotics for non-commutative 2-torus

Interplay

 between Geometry andProbability:
Exit time
asymp-
totics of
Brownian
motion on manifolds:

Formulation of quantum exit time.

Let $P_{n}=f_{-1}^{\left(k_{n}\right)}\left(U^{k_{n}}\right)+f_{0}^{\left(k_{n}\right)}\left(U^{k_{n}}\right)+f_{1}^{\left(k_{n}\right)}\left(U^{k_{n}}\right) U^{k_{n}}$, be projections such that $\left\{k_{n} \theta\right\} \rightarrow 0$. Put $\epsilon:=\frac{\left\{k_{n} \theta\right\}}{2}$.

Exit time asymptotics for non-commutative 2-torus

Let $P_{n}=f_{-1}^{\left(k_{n}\right)}\left(U^{k_{n}}\right)+f_{0}^{\left(k_{n}\right)}\left(U^{k_{n}}\right)+f_{1}^{\left(k_{n}\right)}\left(U^{k_{n}}\right) U^{k_{n}}$, be projections such that $\left\{k_{n} \theta\right\} \rightarrow 0$. Put $\epsilon:=\frac{\left\{k_{n} \theta\right\}}{2}$.
Consider a standard Brownian motion in \mathbb{R}^{2}, given by $\left(W_{t}^{(1)}, W_{t}^{(2)}\right)$.

Exit time asymptotics for non-commutative 2-torus

Let $P_{n}=f_{-1}^{\left(k_{n}\right)}\left(U^{k_{n}}\right)+f_{0}^{\left(k_{n}\right)}\left(U^{k_{n}}\right)+f_{1}^{\left(k_{n}\right)}\left(U^{k_{n}}\right) U^{k_{n}}$, be projections such that $\left\{k_{n} \theta\right\} \rightarrow 0$. Put $\epsilon:=\frac{\left\{k_{n} \theta\right\}}{2}$.
Consider a standard Brownian motion in \mathbb{R}^{2}, given by $\left(W_{t}^{(1)}, W_{t}^{(2)}\right)$. Define $j_{t}: W^{*}\left(\mathbb{T}_{\theta}^{2}\right) \rightarrow W^{*}\left(\mathbb{T}_{\theta}^{2}\right) \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{2}\right)\right)\right)$ by $j_{t}(\cdot):=\alpha_{\left(e^{2 \pi i i_{t}^{(1)}, e^{\left.2 \pi i w_{t}^{(2)}\right)}}{ }^{(\cdot)} \text {. } ~\right.}^{\text {. }}$

Exit time asymptotics for non-commutative 2-torus

Let $P_{n}=f_{-1}^{\left(k_{n}\right)}\left(U^{k_{n}}\right)+f_{0}^{\left(k_{n}\right)}\left(U^{k_{n}}\right)+f_{1}^{\left(k_{n}\right)}\left(U^{k_{n}}\right) U^{k_{n}}$, be projections such that $\left\{k_{n} \theta\right\} \rightarrow 0$. Put $\epsilon:=\frac{\left\{k_{n} \theta\right\}}{2}$.
Consider a standard Brownian motion in \mathbb{R}^{2}, given by $\left(W_{t}^{(1)}, W_{t}^{(2)}\right)$.
Define $j_{t}: W^{*}\left(\mathbb{T}_{\theta}^{2}\right) \rightarrow W^{*}\left(\mathbb{T}_{\theta}^{2}\right) \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{2}\right)\right)\right)$ by
$j_{t}(\cdot):=\alpha_{\left(e^{2 \pi i w_{t}^{(1)}, e^{\left.2 \pi i w_{t}^{(2)}\right)}}{ }^{(\cdot)} \text {. } ~\right.}^{\text {. }}$
Note that j_{t} defined above is the standard Brownian motion on $C^{*}\left(\mathbb{T}_{\theta}^{2}\right)$.

Exit time asymptotics for non-commutative 2-torus

We have:

Exit time asymptotics for non-commutative 2-torus

We have:

Exit time asymptotics for non-commutative 2-torus

We have:

Theorem

Almost surely, $\bigwedge_{s \leq t}\left(j_{s}\left(P_{n}\right)(\omega)\right) \in W^{*}(U)$, for all n, i.e.

$$
\bigwedge_{s \leq t}\left(j_{s}\left(P_{n}\right)\right) \in W^{*}(U) \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{2}\right)\right)\right),
$$

for each n.

Exit time asymptotics for non-commutative 2-torus

We have:

Theorem

Almost surely, $\bigwedge_{s \leq t}\left(j_{s}\left(P_{n}\right)(\omega)\right) \in W^{*}(U)$, for all n, i.e.

$$
\bigwedge_{s \leq t}\left(j_{s}\left(P_{n}\right)\right) \in W^{*}(U) \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{2}\right)\right)\right),
$$

for each n.

Exit time asymptotics for non-commutative 2-torus

We have:

Theorem

Almost surely, $\bigwedge_{s \leq t}\left(j_{s}\left(P_{n}\right)(\omega)\right) \in W^{*}(U)$, for all n, i.e.

$$
\bigwedge_{s \leq t}\left(j_{s}\left(P_{n}\right)\right) \in W^{*}(U) \otimes B\left(\Gamma\left(L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{2}\right)\right)\right)
$$

for each n.

Outline of the proof:

In the strong operator topology,

$$
\begin{equation*}
\bigwedge_{0 \leq s \leq t}\left(j_{s}\left(P_{n}\right)\right)=\lim _{m \rightarrow \infty} \bigwedge_{i}\left\{j_{\frac{i t}{2^{m}}}\left(P_{n}\right) \wedge j_{\frac{(i+1) t}{2^{m}}}\left(P_{n}\right)\right\} \tag{6}
\end{equation*}
$$

Now almost surely a Brownian path restricted to $[0, t]$ is uniformly continuous, so that the for sufficiently large m, and for almost all $\omega,\left|W_{\frac{i t}{2^{m}}}^{(1)}-W_{\frac{(i+1) t}{2^{m}}}^{(1)}\right|$ can be made small, uniformly for all i such that $i=0,1, . .2^{m}$. So $\bigwedge_{i}\left\{j_{\frac{i t}{2 m}}\left(P_{n}\right) \wedge j_{\frac{(i+1) t}{2 m}}\left(P_{n}\right)\right\} \in W^{*}(U)$ by Theorem 3.2. It can be shown that the set of projections of this type is closed in the WOT-topology. Hence proved.

Exit time asymptotics for non-commutative 2-torus

Note that $W^{*}(U)$ is isomorphic with $L^{\infty}(\mathbb{T})$.

Interplay between Geometry and
 Probability:
 Exit time asymp-
 totics of
 Brownian motion on manifolds.

Formulation of quantum exit time.

Exit time asymptotics for non-commutative 2-torus

B.Das

Note that $W^{*}(U)$ is isomorphic with $L^{\infty}(\mathbb{T})$.
Consider the pure states $\left\{e v_{z} \circ E_{1}, e v_{x} \circ E_{2} \mid x, z \in \mathbb{T}\right\}$ on $W^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, which are also normal. Let $z_{n}=e^{2 \pi i \frac{3\left\{k_{n} \theta\right\}}{4}}$. Consider the sequence of pure states $\phi_{z_{n}}:=e v_{z_{n}} \circ E_{1}$.

Exit time asymptotics for non-commutative 2-torus

B.Das

Note that $W^{*}(U)$ is isomorphic with $L^{\infty}(\mathbb{T})$.
Consider the pure states $\left\{e v_{z} \circ E_{1}, e v_{x} \circ E_{2} \mid x, z \in \mathbb{T}\right\}$ on $W^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, which are also normal. Let $z_{n}=e^{2 \pi i \frac{3\left\{k_{n} \theta\right\}}{4}}$. Consider the sequence of pure states $\phi_{z_{n}}:=e v_{z_{n}} \circ E_{1}$.
Consider

$$
\left\langle e(0),\left(\phi_{z_{n}} \otimes 1\right) \circ \bigwedge_{0 \leq s \leq t}\left(j_{s}\left(P_{n}\right)\right) e(0)\right\rangle .
$$

Exit time asymptotics for non-commutative 2-torus

B.Das

Note that $W^{*}(U)$ is isomorphic with $L^{\infty}(\mathbb{T})$.
Consider the pure states $\left\{e v_{z} \circ E_{1}, e v_{x} \circ E_{2} \mid x, z \in \mathbb{T}\right\}$ on $W^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, which are also normal. Let $z_{n}=e^{2 \pi i \frac{3\left\{k_{n} \theta\right\}}{4}}$. Consider the sequence of pure states $\phi_{z_{n}}:=e v_{z_{n}} \circ E_{1}$.
Consider

$$
\left\langle e(0),\left(\phi_{z_{n}} \otimes 1\right) \circ \bigwedge_{0 \leq s \leq t}\left(j_{s}\left(P_{n}\right)\right) e(0)\right\rangle .
$$

A direct computation shows that this is equal to

$$
\mathbb{P}\left\{e^{2 \pi i W_{s}^{(1)}} \in \mathcal{B}, 0 \leq s \leq t\right\}=\mathbb{P}\left\{\tau_{\left[\frac{-\left\{k_{n} \theta\right\}}{4}, \frac{\left\{k_{n} \theta\right\}}{4}\right]}>t\right\}
$$

where $\mathcal{B}:=\left\{e^{2 \pi i x}: x \in\left[\frac{-\left\{k_{n} \theta\right\}}{4}, \frac{\left\{k_{n} \theta\right\}}{4}\right]\right\}$.

Exit time asymptotics for non-commutative 2-torus

B.Das

Note that $W^{*}(U)$ is isomorphic with $L^{\infty}(\mathbb{T})$.
Consider the pure states $\left\{e v_{z} \circ E_{1}, e v_{x} \circ E_{2} \mid x, z \in \mathbb{T}\right\}$ on $W^{*}\left(\mathbb{T}_{\theta}^{2}\right)$, which are also normal. Let $z_{n}=e^{2 \pi i \frac{3\left\{k_{n} \theta\right\}}{4}}$. Consider the sequence of pure states $\phi_{z_{n}}:=e v_{z_{n}} \circ E_{1}$.
Consider

$$
\left\langle e(0),\left(\phi_{z_{n}} \otimes 1\right) \circ \bigwedge_{0 \leq s \leq t}\left(j_{s}\left(P_{n}\right)\right) e(0)\right\rangle .
$$

A direct computation shows that this is equal to

$$
\mathbb{P}\left\{e^{2 \pi i W_{s}^{(1)}} \in \mathcal{B}, 0 \leq s \leq t\right\}=\mathbb{P}\left\{\tau_{\left[\frac{-\left\{k_{n} \theta\right\}}{4}, \frac{\left\{k_{n} \theta\right\}}{4}\right]}>t\right\}
$$

where $\mathcal{B}:=\left\{e^{2 \pi i x}: x \in\left[\frac{-\left\{k_{n} \theta\right\}}{4}, \frac{\left\{k_{n} \theta\right\}}{4}\right]\right\}$.
So we have a family of $\left(\tau_{n}\right)_{n}$ random times defined by

$$
\tau_{n}([t,+\infty))=\bigwedge_{0 \leq s \leq t}\left(j_{s}\left(P_{n}\right)\right)
$$

so that $\int_{0}^{t}\left\langle e(0),\left(\phi_{z_{n}} \otimes 1\right) \circ \bigwedge_{0 \leq s \leq t}\left(j_{s}\left(P_{n}\right)\right) e(0)\right\rangle d t$ can be taken as the expectation of the random time τ_{n}.

Exit time asymptotics for non-commutative 2-torus

B.Das

Interplay between Geometry and
Probability:
Exit time asymptotics of Brownian motion on manifolds.

Formutation of quantum exit time.

Note that here the analogue for balls of decreasing volume is $\left(P_{n}\right)_{n}$, such that $\operatorname{tr}\left(P_{n}\right)=\left\{k_{n} \theta\right\} \rightarrow 0$, tr being the canonical trace in $W^{*}\left(\mathbb{T}_{\theta}^{2}\right)$.

Exit time asymptotics for non-commutative 2-torus

Note that here the analogue for balls of decreasing volume is $\left(P_{n}\right)_{n}$, such that $\operatorname{tr}\left(P_{n}\right)=\left\{k_{n} \theta\right\} \rightarrow 0$, tr being the canonical trace in $W^{*}\left(\mathbb{T}_{\theta}^{2}\right)$.
Now, by the Pinsky's result, we have

$$
\begin{align*}
& \int_{0}^{t}\left\langle e(0),\left(\phi_{z_{n}} \otimes 1\right) \circ \bigwedge_{0 \leq s \leq t}\left(j_{s}\left(P_{n}\right)\right) e(0)\right\rangle d t \\
& =\mathbb{E}\left(\tau_{\left[\frac{-\left\{k_{n} \theta\right\}}{4}, \frac{\left\{k_{n} \theta\right\}}{4}\right]}\right) \\
& =2 \sin ^{2}\left(\frac{\left\{k_{n} \theta\right\}}{8}\right)+\frac{2}{3} \sin ^{4}\left(\frac{\left\{k_{n} \theta\right\}}{8}\right)+O\left(\sin ^{5}\left(\frac{\left\{k_{n} \theta\right\}}{8}\right)\right) \tag{7}\\
& =\frac{\left\{k_{n} \theta\right\}^{2}}{2^{5}}+\frac{\left\{k_{n} \theta\right\}^{4}}{2^{11} .3}+O\left(\left\{k_{n} \theta\right\}^{5}\right),
\end{align*}
$$

since the mean curvature of the circle viewed inside \mathbb{R}^{2} is 1.

Exit time asymptotics for non-commutative 2-torus

B.Das

Interplay

 between Geometry andProbability:
Exit time asymp-
totics of
Brownian motion on manifolds:
Formulation of quantum exit time.

In view of the above equations, we see that

Exit time asymptotics for non-commutative 2-torus

Interplay

 between Geometry andProbability:
Exit time asymp-
totics of
Brownian motion on manifolds.

In view of the above equations, we see that the 'intrinsic dimension' $n_{0}=1$,

Exit time asymptotics for non-commutative 2-torus

Interplay

 between Geometry andProbability:
Exit time
asymp-
totics of
Brownian
motion on manifolds.

Formulation of quantum exit time.

In view of the above equations, we see that the 'intrinsic dimension' $n_{0}=1$, the 'extrinsic diimension' $d=5$,

Exit time asymptotics for non-commutative 2-torus

In view of the above equations, we see that
the 'extrinsic diimension' $d=5$, and the 'mean curvature' is $\frac{1}{2 \sqrt{2}}$.

Exit time asymptotics for non-commutative 2-torus

In view of the above equations, we see that
the 'extrinsic diimension' $d=5$, and the 'mean curvature' is $\frac{1}{2 \sqrt{2}}$.
All these give a good justification for developing a general theory of quantum stochastic geometry.

Exit time asymptotics on the non-commutative 2-torus

Probability

Exit time
asymp-
totics of
Brownian motion on manifolds.

Formulation of quantum exit time.

Let $\mathfrak{X}=\left\{A \in W^{*}\left(\mathbb{T}_{\theta}^{2}\right) \mid A=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V, f_{1}, f_{0} \in\right.$ $\left.L^{\infty}(\mathbb{T}), f_{-1}(t):=\overline{f_{1}}(t+\theta)\right\}$.

Exit time asymptotics on the non-commutative 2-torus

Probability

Exit time
asymp-
totics of
Brownian motion on manifolds.

Formulation of quantum exit time.

Let $\mathfrak{X}=\left\{A \in W^{*}\left(\mathbb{T}_{\theta}^{2}\right) \mid A=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V, f_{1}, f_{0} \in\right.$ $\left.L^{\infty}(\mathbb{T}), f_{-1}(t):=\overline{f_{1}}(t+\theta)\right\}$.

Exit time asymptotics on the non-commutative 2-torus

Interplay between Geometry

$$
\begin{aligned}
& \text { Let } \mathfrak{X}=\left\{A \in W^{*}\left(\mathbb{T}_{\theta}^{2}\right) \mid A=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V, f_{1}, f_{0} \in\right. \\
& \left.L^{\infty}(\mathbb{T}), f_{-1}(t):=\overline{f_{1}(t+\theta)}\right\} .
\end{aligned}
$$

Lemma

The subspace \mathfrak{X} is closed in the ultraweak topology.

Exit time asymptotics on the non-commutative 2-torus

Interplay between Geometry

$$
\begin{aligned}
& \text { Let } \mathfrak{X}=\left\{A \in W^{*}\left(\mathbb{T}_{\theta}^{2}\right) \mid A=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V, f_{1}, f_{0} \in\right. \\
& \left.L^{\infty}(\mathbb{T}), f_{-1}(t):=\overline{f_{1}(t+\theta)}\right\} .
\end{aligned}
$$

Lemma

The subspace \mathfrak{X} is closed in the ultraweak topology.

Exit time asymptotics on the non-commutative 2-torus

$$
\begin{aligned}
& \text { Let } \mathfrak{X}=\left\{A \in W^{*}\left(\mathbb{T}_{\theta}^{2}\right) \mid A=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V, f_{1}, f_{0} \in\right. \\
& \left.L^{\infty}(\mathbb{T}), f_{-1}(t):==f_{1}(t+\theta)\right\} .
\end{aligned}
$$

Lemma

The subspace \mathfrak{X} is closed in the ultraweak topology.

Proof.

Let $A_{\beta}:=f_{-1}^{(\beta)}(U) V^{-1}+f_{0}^{(\beta)}(U)+f_{1}^{(\beta)}(U) V$ be a convergent net in the ultraweak topology. Now $\phi_{1}\left(A_{\beta}\right)=f_{0}^{(\beta)}(U), \phi_{1}\left(A_{\beta} V\right)=f_{-1}^{(\beta)}(U)$ and $\phi_{1}\left(A_{\beta} V^{-1}\right)=f_{1}^{(\beta)}(U)$ Since ϕ_{1} is a normal map, which implies that $f_{0}^{(\beta)}(U), f_{1}^{(\beta)}(U)$ and $f_{-1}^{(\beta)}(U)$ (all of which are elements of $\left.L^{\infty}(\mathbb{T})\right)$ are ultraweakly convergent, to $f_{0}(U), f_{1}(U), f_{-1}(U)$ (say), and clearly $f_{-1}(t)=\overline{f_{1}(t+\theta)}$.

Exit time asymptotics on non-commutative 2-torus

B.Das
Interplaybetween
Geometry
and
Probability:
Exit timeasymp-totics ofBrownianmotion onmanifolds.
Formulationof quantum
exit time.

Exit time asymptotics on non-commutative 2-torus

Lemma

Suppose f_{1}, f_{0} are as defined before and $A \in \mathfrak{X}$. Define

$$
A_{s, t}:=f_{-1}\left(e^{2 \pi i s} U\right) V^{-1} e^{-2 \pi i t}+f_{0}\left(e^{2 \pi i s} U\right)+f_{1}\left(e^{2 \pi i s} U\right) V e^{2 \pi i t} .
$$

Suppose $s, s^{\prime} \in[0,1)$ be such that $\left|s-s^{\prime}\right| \leq \frac{\epsilon}{4}$ where $0<\epsilon<\theta$, and $\left|\operatorname{supp}\left(f_{1}\right)\right|<\epsilon$, where $|C|$ denotes the Lebesgue measure of a Borel subset $C \subseteq \mathbb{R}$. Then $A_{s, t} \cdot A_{s^{\prime}, t^{\prime}} \in \mathfrak{X}$.

Exit time asymptotics on non-commutative 2-torus

Lemma

Suppose f_{1}, f_{0} are as defined before and $A \in \mathfrak{X}$. Define

$$
A_{s, t}:=f_{-1}\left(e^{2 \pi i s} U\right) V^{-1} e^{-2 \pi i t}+f_{0}\left(e^{2 \pi i s} U\right)+f_{1}\left(e^{2 \pi i s} U\right) V e^{2 \pi i t} .
$$

Suppose $s, s^{\prime} \in[0,1)$ be such that $\left|s-s^{\prime}\right| \leq \frac{\epsilon}{4}$ where $0<\epsilon<\theta$, and $\left|\operatorname{supp}\left(f_{1}\right)\right|<\epsilon$, where $|C|$ denotes the Lebesgue measure of a Borel subset $C \subseteq \mathbb{R}$. Then $A_{s, t} \cdot A_{s^{\prime}, t^{\prime}} \in \mathfrak{X}$.

Exit time asymptotics on non-commutative 2-torus

Interplay
between Geometry and Probability: Exit time asymptotics of Brownian motion on manifolds:

Formulation of quantum exit time.

Lemma

Suppose f_{1}, f_{0} are as defined before and $A \in \mathfrak{X}$. Define

$$
A_{s, t}:=f_{-1}\left(e^{2 \pi i s} U\right) V^{-1} e^{-2 \pi i t}+f_{0}\left(e^{2 \pi i s} U\right)+f_{1}\left(e^{2 \pi i s} U\right) V e^{2 \pi i t}
$$

Suppose $s, s^{\prime} \in[0,1)$ be such that $\left|s-s^{\prime}\right| \leq \frac{\epsilon}{4}$ where $0<\epsilon<\theta$, and $\left|\operatorname{supp}\left(f_{1}\right)\right|<\epsilon$, where $|C|$ denotes the Lebesgue measure of a Borel subset $C \subseteq \mathbb{R}$. Then $A_{s, t} \cdot A_{s^{\prime}, t^{\prime}} \in \mathfrak{X}$.

Proof.

It suffices to show that the coefficient of V^{2} in $A_{s, t} \cdot A_{s^{\prime}, t^{\prime}}$ is zero. By a direct computation, the coefficient of V^{2} is $g(I):=f_{1}(s+I) f_{1}\left(s^{\prime}+I-\theta\right) e^{2 \pi i\left(t+t^{\prime}\right)}$. But $\left|(s+I)-\left(s^{\prime}+I-\theta\right)\right|=\left|\theta+s-s^{\prime}\right|>\epsilon$. Now by hypothesis, we have $\left|\operatorname{supp}\left(f_{1}\right)\right|<\epsilon$, so that $f_{1}(s+l) \cdot f_{1}\left(s^{\prime}+I-\theta\right)=0$ and hence the lemma is proved.

Exit time asymptotics on non-commutative 2-torus

B.Das
Interplaybetween
Geometry
and
Probability:
Exit timeasymp-totics ofBrownianmotion onmanifolds.
Formulationof quantum
exit time.

Exit time asymptotics on non-commutative 2-torus

Interplay

 betweenLemma
Suppose $A=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and $f_{1}(I) f_{1}(I+\theta)=0$, for $I \in[0,1)$. Then $A^{2 n} \in \mathfrak{X}$, for $n \in \mathbb{N}$.

Exit time asymptotics on non-commutative 2-torus

Interplay

 betweenLemma
Suppose $A=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and $f_{1}(I) f_{1}(I+\theta)=0$, for $I \in[0,1)$. Then $A^{2 n} \in \mathfrak{X}$, for $n \in \mathbb{N}$.

Exit time asymptotics on non-commutative 2-torus

Lemma

Suppose $A=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and $f_{1}(I) f_{1}(I+\theta)=0$, for $I \in[0,1)$. Then $A^{2 n} \in \mathfrak{X}$, for $n \in \mathbb{N}$.

Proof.

The coefficient of V^{2} in A^{2} is $f_{1}(I) f_{1}(I+\theta)$ for $I \in[0,1)$ and this is zero by the hypoethesis. Hence $A^{2} \in \mathfrak{X}$. The coefficient of V in A^{2} is $f_{1}^{(2)}(I):=f_{1}\left(f_{0}+\tau_{\theta}\left(f_{0}\right)\right)$, where τ_{θ} is left translation by θ. We have $f_{1}^{(2)}(I) f_{1}^{(2)}(I+\theta)=0$, so that applying the same argument as before, we conclude that $A^{4} \in \mathfrak{X}$. Proceeding like this we get the required result.

Exit time asymptotics on non-commutative 2-torus

Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

Exit time asymptotics on non-commutative 2-torus

Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

Exit time asymptotics on non-commutative 2-torus

Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

Lemma

Suppose $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$, such that $P^{2}=P$ and $\left|\operatorname{supp}\left(f_{1}\right)\right|<\epsilon$. Then $\left(A_{s, t}(P)\right) \bigwedge\left(A_{s^{\prime}, t^{\prime}}(P)\right) \in \mathfrak{X}$ for $\left|s-s^{\prime}\right|<\frac{\epsilon}{4}$.

Exit time asymptotics on non-commutative 2-torus

Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

Exit time asymptotics on non-commutative 2-torus

Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

Exit time asymptotics on non-commutative 2-torus

Using the above three lemmas and von-Neumann's formula for minimum of two projections, we have

Lemma

Suppose $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$, such that $P^{2}=P$ and $\left|\operatorname{supp}\left(f_{1}\right)\right|<\epsilon$. Then $\left(A_{s, t}(P)\right) \bigwedge\left(A_{s^{\prime}, t^{\prime}}(P)\right) \in \mathfrak{X}$ for $\left|s-s^{\prime}\right|<\frac{\epsilon}{4}$.

Exit time asympotics for the non-commutative 2-torus.

B.Das
Interplay
betweenGeometry
Probability:
Exit time
asymp-
totics of
Brownian
motion on
manifolds.
Formulation
of quantum
exit time.
A case
study:Exit
time
asymptotics
on the non-
commutative
2-torus

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and
$\left(f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and ($\left.f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,
II $f_{1}(s+I) f_{1}^{(A)}(I-\theta)=0$;

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and $\left(f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,
II $f_{1}(s+l) f_{1}^{(A)}(I-\theta)=0$;
2. $f_{-1}(s+I) f_{-1}^{(A)}(I+\theta)=0$;

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and $\left(f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,
$1 f_{1}(s+I) f_{1}^{(A)}(I-\theta)=0$;
2. $f_{-1}(s+I) f_{-1}^{(A)}(I+\theta)=0$;

3 $f_{0}(s+I) f_{0}^{(A)}(I)+f_{1}(s+I) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t}+f_{-1}(s+I) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t}=f_{0}^{(A)}(I)$;

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and $\left(f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,
$1 f_{1}(s+I) f_{1}^{(A)}(I-\theta)=0$;
2] $f_{-1}(s+I) f_{-1}^{(A)}(I+\theta)=0$;
$3 f_{0}(s+I) f_{0}^{(A)}(I)+f_{1}(s+I) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t}+f_{-1}(s+I) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t}=f_{0}^{(A)}(I)$;
$4 f_{1}(s+I) f_{0}^{(A)}(I-\theta) e^{2 \pi i t}+f_{0}(s+I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and $\left(f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,
$1 f_{1}(s+I) f_{1}^{(A)}(I-\theta)=0$;
2. $f_{-1}(s+I) f_{-1}^{(A)}(I+\theta)=0$;
$3 f_{0}(s+I) f_{0}^{(A)}(I)+f_{1}(s+I) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t}+f_{-1}(s+I) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t}=f_{0}^{(A)}(I)$;
$4 f_{1}(s+I) f_{0}^{(A)}(I-\theta) e^{2 \pi i t}+f_{0}(s+I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;
$5 f_{-1}(s+I) f_{0}^{(A)}(I+\theta) e^{-2 \pi i t}+f_{0}(s+I) f_{-1}^{(A)}(I)=f_{-1}^{(A)}(I)$;

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and $\left(f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,
$1 f_{1}(s+I) f_{1}^{(A)}(I-\theta)=0$;
2. $f_{-1}(s+I) f_{-1}^{(A)}(I+\theta)=0$;
$3 f_{0}(s+I) f_{0}^{(A)}(I)+f_{1}(s+I) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t}+f_{-1}(s+I) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t}=f_{0}^{(A)}(I)$;
$4 f_{1}(s+I) f_{0}^{(A)}(I-\theta) e^{2 \pi i t}+f_{0}(s+I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;
$5 f_{-1}(s+I) f_{0}^{(A)}(I+\theta) e^{-2 \pi i t}+f_{0}(s+I) f_{-1}^{(A)}(I)=f_{-1}^{(A)}(I)$;
б $f_{1}\left(s^{\prime}+I\right) f_{1}^{(A)}(I-\theta)=0$;

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and $\left(f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,
$1 f_{1}(s+I) f_{1}^{(A)}(I-\theta)=0$;
2. $f_{-1}(s+I) f_{-1}^{(A)}(I+\theta)=0$;
$3 f_{0}(s+I) f_{0}^{(A)}(I)+f_{1}(s+I) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t}+f_{-1}(s+I) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t}=f_{0}^{(A)}(I)$;
$4 f_{1}(s+I) f_{0}^{(A)}(I-\theta) e^{2 \pi i t}+f_{0}(s+I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;
$5 f_{-1}(s+I) f_{0}^{(A)}(I+\theta) e^{-2 \pi i t}+f_{0}(s+I) f_{-1}^{(A)}(I)=f_{-1}^{(A)}(I)$;
6 $f_{1}\left(s^{\prime}+I\right) f_{1}^{(A)}(I-\theta)=0$;
$7 f_{-1}\left(s^{\prime}+I\right) f_{-1}^{(A)}(I+\theta)=0$;

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and $\left(f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,
$1 f_{1}(s+I) f_{1}^{(A)}(I-\theta)=0$;
2] $f_{-1}(s+I) f_{-1}^{(A)}(I+\theta)=0$;
$3 f_{0}(s+I) f_{0}^{(A)}(I)+f_{1}(s+I) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t}+f_{-1}(s+I) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t}=f_{0}^{(A)}(I)$;
$4 f_{1}(s+I) f_{0}^{(A)}(I-\theta) e^{2 \pi i t}+f_{0}(s+I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;
$5 f_{-1}(s+I) f_{0}^{(A)}(I+\theta) e^{-2 \pi i t}+f_{0}(s+I) f_{-1}^{(A)}(I)=f_{-1}^{(A)}(I)$;
б $f_{1}\left(s^{\prime}+I\right) f_{1}^{(A)}(I-\theta)=0$;
$7 f_{-1}\left(s^{\prime}+I\right) f_{-1}^{(A)}(I+\theta)=0$;
$8 f_{0}\left(s^{\prime}+I\right) f_{0}^{(A)}(I)+f_{1}\left(s^{\prime}+I\right) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t^{\prime}}+f_{-1}\left(s^{\prime}+I\right) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t^{\prime}}=$ $f_{0}^{(A)}(I)$;

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and $\left(f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,
$1 f_{1}(s+I) f_{1}^{(A)}(I-\theta)=0$;
[2 $f_{-1}(s+I) f_{-1}^{(A)}(I+\theta)=0$;
$3 f_{0}(s+I) f_{0}^{(A)}(I)+f_{1}(s+I) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t}+f_{-1}(s+I) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t}=f_{0}^{(A)}(I)$;
$4 f_{1}(s+I) f_{0}^{(A)}(I-\theta) e^{2 \pi i t}+f_{0}(s+I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;
$5 f_{-1}(s+I) f_{0}^{(A)}(I+\theta) e^{-2 \pi i t}+f_{0}(s+I) f_{-1}^{(A)}(I)=f_{-1}^{(A)}(I)$;
б $f_{1}\left(s^{\prime}+I\right) f_{1}^{(A)}(I-\theta)=0$;
$7 f_{-1}\left(s^{\prime}+I\right) f_{-1}^{(A)}(I+\theta)=0$;
$8 f_{0}\left(s^{\prime}+I\right) f_{0}^{(A)}(I)+f_{1}\left(s^{\prime}+I\right) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t^{\prime}}+f_{-1}\left(s^{\prime}+I\right) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t^{\prime}}=$ $f_{0}^{(A)}(I)$;
g $f_{1}\left(s^{\prime}+I\right) f_{0}^{(A)}(I-\theta) e^{2 \pi i t^{\prime}}+f_{0}\left(s^{\prime}+I\right) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;

Exit time asympotics for the non-commutative 2-torus.

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ and
$A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V$ be projections, $\left(f_{-1}, f_{0}, f_{1}\right)$ and $\left(f_{-1}^{(A)}, f_{0}^{(A)}, f_{1}^{(A)}\right)$ satisfying the conditions described before. Then $A \leq A_{s, t}(P)$ and $A \leq A_{s^{\prime}, t^{\prime}}(P)$ if and only if the following hold:
For $I \in[0,1)$,
$1 f_{1}(s+I) f_{1}^{(A)}(I-\theta)=0$;
[2 $f_{-1}(s+I) f_{-1}^{(A)}(I+\theta)=0$;
$3 f_{0}(s+I) f_{0}^{(A)}(I)+f_{1}(s+I) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t}+f_{-1}(s+I) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t}=f_{0}^{(A)}(I)$;
$4 f_{1}(s+I) f_{0}^{(A)}(I-\theta) e^{2 \pi i t}+f_{0}(s+I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;
$5 f_{-1}(s+I) f_{0}^{(A)}(I+\theta) e^{-2 \pi i t}+f_{0}(s+I) f_{-1}^{(A)}(I)=f_{-1}^{(A)}(I)$;
6 $f_{1}\left(s^{\prime}+I\right) f_{1}^{(A)}(I-\theta)=0$;
$7 f_{-1}\left(s^{\prime}+I\right) f_{-1}^{(A)}(I+\theta)=0$;
$8 f_{0}\left(s^{\prime}+I\right) f_{0}^{(A)}(I)+f_{1}\left(s^{\prime}+I\right) f_{-1}^{(A)}(I-\theta) e^{2 \pi i t^{\prime}}+f_{-1}\left(s^{\prime}+I\right) f_{1}^{(A)}(I+\theta) e^{-2 \pi i t^{\prime}}=$ $f_{0}^{(A)}(I)$;
9. $f_{1}\left(s^{\prime}+I\right) f_{0}^{(A)}(I-\theta) e^{2 \pi i t^{\prime}}+f_{0}\left(s^{\prime}+I\right) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;

I0 $f_{-1}\left(s^{\prime}+I\right) f_{0}^{(A)}(I+\theta) e^{-2 \pi i t^{\prime}}+f_{0}\left(s^{\prime}+I\right) f_{-1}^{(A)}(I)=f_{-1}^{(A)}(I)$;

Exit time asymptotics for non-commutative 2-torus

B.Das
Interplay between
Geometry
and
Probability:
Exit timeasymp-totics ofBrownianmotion onmanifolds.
Formulationof quantum
exit time.

Exit time asymptotics for non-commutative 2-torus

Lemma

For two projections A and B such that

$$
\begin{aligned}
& A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V, \\
& B=f_{-1}^{(B)}(U) V^{-1}+f_{0}^{(B)}(U)+f_{1}^{(B)}(U) V
\end{aligned}
$$

we have $A \leq B$ if and only if for $I \in[0,1)$, we have:

Exit time asymptotics for non-commutative 2-torus

Lemma

For two projections A and B such that

$$
\begin{aligned}
& A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V, \\
& B=f_{-1}^{(B)}(U) V^{-1}+f_{0}^{(B)}(U)+f_{1}^{(B)}(U) V
\end{aligned}
$$

we have $A \leq B$ if and only if for $I \in[0,1)$, we have:

- $f_{1}^{(B)}(I) f_{1}^{(A)}(I-\theta)=0$;

Exit time asymptotics for non-commutative 2-torus

Lemma
For two projections A and B such that

$$
\begin{aligned}
& A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V, \\
& B=f_{-1}^{(B)}(U) V^{-1}+f_{0}^{(B)}(U)+f_{1}^{(B)}(U) V
\end{aligned}
$$

we have $A \leq B$ if and only if for $I \in[0,1)$, we have:

- $f_{1}^{(B)}(I) f_{1}^{(A)}(I-\theta)=0$;
- $f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+2 \theta)=0$;

Exit time asymptotics for non-commutative 2-torus

Lemma
For two projections A and B such that

$$
\begin{aligned}
& A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V \\
& B=f_{-1}^{(B)}(U) V^{-1}+f_{0}^{(B)}(U)+f_{1}^{(B)}(U) V
\end{aligned}
$$

we have $A \leq B$ if and only if for $I \in[0,1)$, we have:

- $f_{1}^{(B)}(I) f_{1}^{(A)}(I-\theta)=0$;
- $f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+2 \theta)=0$;
- $f_{0}^{(B)}(I) f_{0}^{A}(I)+f_{1}^{(B)}(I) f_{0}^{(A)}(I)+f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+\theta)=f_{0}^{(A)}(I)$;

Exit time asymptotics for non-commutative 2-torus

Lemma

For two projections A and B such that

$$
\begin{aligned}
& A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V \\
& B=f_{-1}^{(B)}(U) V^{-1}+f_{0}^{(B)}(U)+f_{1}^{(B)}(U) V
\end{aligned}
$$

we have $A \leq B$ if and only if for $I \in[0,1)$, we have:

- $f_{1}^{(B)}(I) f_{1}^{(A)}(I-\theta)=0 ;$
- $f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+2 \theta)=0$;
- $f_{0}^{(B)}(I) f_{0}^{A}(I)+f_{1}^{(B)}(I) f_{0}^{(A)}(I)+f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+\theta)=f_{0}^{(A)}(I)$;
- $f_{1}^{(B)}(I) f_{0}^{(A)}(I-\theta)+f_{0}^{(B)}(I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;

Exit time asymptotics for non-commutative 2-torus

Lemma

For two projections A and B such that

$$
\begin{aligned}
& A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V \\
& B=f_{-1}^{(B)}(U) V^{-1}+f_{0}^{(B)}(U)+f_{1}^{(B)}(U) V
\end{aligned}
$$

we have $A \leq B$ if and only if for $I \in[0,1)$, we have:

- $f_{1}^{(B)}(I) f_{1}^{(A)}(I-\theta)=0$;
- $f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+2 \theta)=0$;
- $f_{0}^{(B)}(I) f_{0}^{A}(I)+f_{1}^{(B)}(I) f_{0}^{(A)}(I)+f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+\theta)=f_{0}^{(A)}(I)$;
- $f_{1}^{(B)}(I) f_{0}^{(A)}(I-\theta)+f_{0}^{(B)}(I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;
- $f_{1}^{(B)}(I+\theta) f_{0}^{(A)}(I+\theta)+f_{0}^{(B)}(I) f_{1}^{(A)}(I+\theta)=f_{1}^{(A)}(I+\theta)$;

Exit time asymptotics for non-commutative 2-torus

Lemma

For two projections A and B such that

$$
\begin{aligned}
& A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V \\
& B=f_{-1}^{(B)}(U) V^{-1}+f_{0}^{(B)}(U)+f_{1}^{(B)}(U) V
\end{aligned}
$$

we have $A \leq B$ if and only if for $I \in[0,1)$, we have:

- $f_{1}^{(B)}(I) f_{1}^{(A)}(I-\theta)=0$;
- $f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+2 \theta)=0$;
- $f_{0}^{(B)}(I) f_{0}^{A}(I)+f_{1}^{(B)}(I) f_{0}^{(A)}(I)+f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+\theta)=f_{0}^{(A)}(I)$;
- $f_{1}^{(B)}(I) f_{0}^{(A)}(I-\theta)+f_{0}^{(B)}(I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;
- $f_{1}^{(B)}(I+\theta) f_{0}^{(A)}(I+\theta)+f_{0}^{(B)}(I) f_{1}^{(A)}(I+\theta)=f_{1}^{(A)}(I+\theta)$;

Exit time asymptotics for non-commutative 2-torus

Lemma

Interplay between Geometry and
Probability:
Exit time asymptotics of Brownian motion on manifolds.

Formulation of quantum exit time.

For two projections A and B such that

$$
\begin{aligned}
& A=f_{-1}^{(A)}(U) V^{-1}+f_{0}^{(A)}(U)+f_{1}^{(A)}(U) V \\
& B=f_{-1}^{(B)}(U) V^{-1}+f_{0}^{(B)}(U)+f_{1}^{(B)}(U) V
\end{aligned}
$$

we have $A \leq B$ if and only if for $I \in[0,1)$, we have:

- $f_{1}^{(B)}(I) f_{1}^{(A)}(I-\theta)=0$;
- $f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+2 \theta)=0$;
- $f_{0}^{(B)}(I) f_{0}^{A}(I)+f_{1}^{(B)}(I) f_{0}^{(A)}(I)+f_{1}^{(B)}(I+\theta) f_{1}^{(A)}(I+\theta)=f_{0}^{(A)}(I)$;
- $f_{1}^{(B)}(I) f_{0}^{(A)}(I-\theta)+f_{0}^{(B)}(I) f_{1}^{(A)}(I)=f_{1}^{(A)}(I)$;
- $f_{1}^{(B)}(I+\theta) f_{0}^{(A)}(I+\theta)+f_{0}^{(B)}(I) f_{1}^{(A)}(I+\theta)=f_{1}^{(A)}(I+\theta)$;

Lemma

Let $P=f_{-1}(U) V^{-1}+f_{0}(U)+f_{1}(U) V$ such that P is a projection and suppose $f_{0}(t)=0$ for some t. Then $f_{1}(t)=f_{1}(t+\theta)=0$.

